Sourav Das (University of Illinois at Urbana-Champaign), Zhuolun Xiang (Aptos), Ling Ren (University of Illinois at Urbana-Champaign)

The $q$-Strong Diffie-Hellman~($q$-SDH) parameters are foundational to efficient constructions of many cryptographic primitives such as zero-knowledge succinct non-interactive argument of knowledge, polynomial/vector commitments, verifiable secret sharing, and randomness beacon. The only existing method to generate these parameters securely is highly sequential, requires strong network synchrony assumptions, and has very high communication and computation cost. For example, to generate parameters for any given $q$, each party incurs a communication cost of $Omega(nq)$ and requires $Omega(n)$ rounds. Here $n$ is the number of parties in the secure multiparty computation protocol. Since $q$ is typically large, i.e., on the order of billions, the cost is highly prohibitive.

In this paper, we present a distributed protocol to generate $q$-SDH parameters in an asynchronous network. In a network of $n$ parties, our protocol tolerates up to one-third of malicious parties. Each party incurs a communication cost of $O(q + n^2log q)$ and the protocol finishes in $O(log q + log n)$ expected rounds. We provide a rigorous security analysis of our protocol. We implement our protocol and evaluate it with up to 128 geographically distributed parties. Our evaluation illustrates that our protocol is highly scalable and results in a 2-6$times$ better runtime and 4-13$times$ better per-party bandwidth usage compared to the state-of-the-art synchronous protocol for generating $q$-SDH parameters.

View More Papers

Faster and Better: Detecting Vulnerabilities in Linux-based IoT Firmware...

Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua…

Read More

Towards Real-time Voice Interaction Data Collection Monitoring and Ambient...

Tu Le (University of California, Irvine), Zixin Wang (Zhejiang University), Danny Yuxing Huang (New York University), Yaxing Yao (Virginia Tech), Yuan Tian (University of California, Los Angeles)

Read More

CamPro: Camera-based Anti-Facial Recognition

Wenjun Zhu (Zhejiang University), Yuan Sun (Zhejiang University), Jiani Liu (Zhejiang University), Yushi Cheng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher (Graz University of Technology), Andreas Kogler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More