Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

The severity of information leak (infoleak for short) in OS kernels cannot be underestimated, and various exploitation techniques have been proposed to achieve infoleak in OS kernels. Among them, memory-error-based infoleak is powerful and widely used in real-world exploits. However, existing approaches to finding memory-error-based infoleak lack the systematic reasoning about its search space and do not fully explore the search space. Consequently, they fail to exploit a large number of memory errors in the kernel. According to a theoretical modeling of memory errors, the actual search space of such approach is huge, as multiple steps could be involved in the exploitation process, and virtually any memory error can be exploited to achieve infoleak. To bridge the gap between the theory and reality, we propose a framework K-LEAK to facilitate generating memory-error-based infoleak exploits in the Linux kernel. K-LEAK considers infoleak exploit generation as a data-flow search problem. By modeling unintended data flows introduced by memory errors, and how existing memory errors can create new memory errors, K-LEAK can systematically search for infoleak data-flow paths in a multi-step manner. We implement a prototype of K-LEAK and evaluate it with memory errors from syzbot and CVEs. The evaluation results demonstrate the effectiveness of K-LEAK in generating diverse infoleak exploits using various multi-step strategies.

View More Papers

Benchmarking transferable adversarial attacks

Zhibo Jin (The University of Sydney), Jiayu Zhang (Suzhou Yierqi), Zhiyu Zhu, Huaming Chen (The University of Sydney)

Read More

A Security and Usability Analysis of Local Attacks Against...

Tarun Kumar Yadav (Brigham Young University), Kent Seamons (Brigham Young University)

Read More

Understanding and Analyzing Appraisal Systems in the Underground Marketplaces

Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More