Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Managed languages facilitate convenient ways for serializing objects, allowing applications to persist and transfer them easily, yet this feature opens them up to attacks. By manipulating serialized objects, attackers can trigger a chained execution of existing code segments, using them as gadgets to form an exploit. Protecting deserialization calls against attacks is cumbersome and tedious, leading to many developers avoiding deploying defenses properly. We present QUACK, a framework for automatically protecting applications by fixing calls to deserialization APIs. This “binding” limits the classes allowed for usage in the deserialization process, severely limiting the code available for (ab)use as part of exploits. QUACK computes the set of classes that should be allowed using a novel static duck typing inference technique. In particular, it statically collects all statements in the program code that manipulate objects after they are deserialized, and puts together a filter for the list of classes that should be available at runtime. We have implemented QUACK for PHP and evaluated it on a set of applications with known CVEs, and popular applications crawled from GitHub. QUACK managed to fix the applications in a way that prevented any attempt at automatically generating an exploit against them, by blocking, on average, 97% of the application’s code that could be used as gadgets. We submitted a sample of three fixes generated by QUACK as pull requests, and their developers merged them.

View More Papers

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More

Automatic Adversarial Adaption for Stealthy Poisoning Attacks in Federated...

Torsten Krauß (University of Würzburg), Jan König (University of Würzburg), Alexandra Dmitrienko (University of Wuerzburg), Christian Kanzow (University of Würzburg)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Separation is Good: A Faster Order-Fairness Byzantine Consensus

Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Read More