Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Inter-satellite links will unlock true global access to high-speed internet delivered by Low Earth Orbit (LEO) mega-constellations. Functional packet routing within the constraints of the space environment, spacecraft design, and continual satellite mobility is uniquely challenging and requires novel routing algorithm approaches. Additionally, recent real-world events have highlighted adversarial attempts to deny and disrupt mega-constellation networking capabilities. In this paper, we advance highly resilient LEO mega-constellation dynamic routing algorithms by presenting our novel, ISL architecture-derived, network coordinate system. This coordinate system simplifies the network topology and permits increasingly impactful routing decisions with minimal computational overhead. From our topology, we demonstrate a proof-of-concept, lightweight routing algorithm that is highly resilient and scalable. To promote standardized resilience comparisons for LEO mega-constellation routing algorithms, we also propose a routing resilience testing framework that defines key performance metrics, adversarial capabilities, and testing scenarios. Using our proposed framework, we demonstrate our routing algorithm’s increased resilience over several state-of-the-art dynamic routing algorithms, with 12% packet delivery rate improvement during high adversarial disruption intensities.

View More Papers

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More

A Duty to Forget, a Right to be Assured?...

Hongsheng Hu (CSIRO's Data61), Shuo Wang (CSIRO's Data61), Jiamin Chang (University of New South Wales), Haonan Zhong (University of New South Wales), Ruoxi Sun (CSIRO's Data61), Shuang Hao (University of Texas at Dallas), Haojin Zhu (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61)

Read More

OCPPStorm: A Comprehensive Fuzzing Tool for OCPP Implementations (Long)

Gaetano Coppoletta (University of Illinois Chicago), Rigel Gjomemo (Discovery Partners Institute, University of Illinois), Amanjot Kaur, Nima Valizadeh (Cardiff University), Venkat Venkatakrishnan (Discovery Partners Institute, University of Illinois), Omer Rana (Cardiff University)

Read More

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More