Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Despite the implementation of encrypted channels, such as those offered by anonymity networks like Tor, network adversaries have demonstrated the ability to compromise users’ browsing privacy through website fingerprinting attacks. This paper studies the susceptibility of Tor users to website fingerprinting when data is exchanged over low Earth orbit (LEO) satellite Internet links. Specifically, we design an experimental testbed that incorporates a Starlink satellite Internet connection, allowing us to collect a dataset for evaluating the success of website fingerprinting attacks in satellite environments compared to conventional fiber connections. Our findings suggest that Tor traffic transmitted via Starlink is as vulnerable to fingerprinting attacks as traffic over fiber links, despite the distinct networking characteristics of Starlink connections in contrast to fiber.

View More Papers

Towards Real-time Voice Interaction Data Collection Monitoring and Ambient...

Tu Le (University of California, Irvine), Zixin Wang (Zhejiang University), Danny Yuxing Huang (New York University), Yaxing Yao (Virginia Tech), Yuan Tian (University of California, Los Angeles)

Read More

WIP: Body Posture Analysis as an Objective Measurement for...

Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Read More

BreakSPF: How Shared Infrastructures Magnify SPF Vulnerabilities Across the...

Chuhan Wang (Tsinghua University), Yasuhiro Kuranaga (Tsinghua University), Yihang Wang (Tsinghua University), Mingming Zhang (Zhongguancun Laboratory), Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Haixin Duan (Tsinghua University; Quan Cheng Lab; Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd)

Read More