Syed Khandker (New York University Abu Dhabi), Krzysztof Jurczok (Amateur Radio Operator), Christina Pöpper (New York University Abu Dhabi)

COSPAS-Sarsat is a global satellite-based search and rescue system that provides distress alert and location information to aid in the rescue of people in distress. However, recent studies show that the system lacks proper security mechanisms, making it vulnerable to various cyberattacks, including beacon spoofing, hacking, frequency jamming, and more. This paper proposes a backward-compatible solution to address these longstanding security concerns by incorporating a message authentication code (MAC) and timestamp. The MAC and timestamp ensure the integrity and authenticity of distress signals, while backward compatibility enables seamless integration with existing beacons. The proposed solution was evaluated in both a laboratory setting and a real-world satellite environment, demonstrating its practicality and effectiveness. Experimental results indicate that our solution can effectively prevent attacks such as spoofing, man-in-the-middle, and replay attacks. This solution represents a significant step toward enhancing the security of COSPAS-Sarsat beacon communication, making it more resilient to cyberattacks, and ensuring the timely and accurate delivery of distress signals to search and rescue authorities.

View More Papers

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More

“I used to live in Florida”: Exploring the Impact...

Imani N. S. Munyaka (University of California, San Diego), Daniel A Delgado, Juan Gilbert, Jaime Ruiz, Patrick Traynor (University of Florida)

Read More

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More