Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

NMFTA Best Short Paper Award Winner ($200 cash prize)!

Due to the absence of encryption and authentication mechanisms, the Controller Area Network (CAN) protocol, widely employed in in-vehicle networks, is susceptible to various cyber attacks. In safeguarding in-vehicle networks against cyber threats, numerous Machine Learning-based (ML) and Deep Learning-based (DL) anomaly detection methods have been proposed, demonstrating high accuracy and proficiency in capturing intricate data patterns. However, the majority of these methods are supervised and heavily reliant on labeled training datasets with known attack types, posing limitations in real-world scenarios where acquiring labeled attack data is challenging. In this paper, we present HistCAN, a lightweight and self-supervised Intrusion Detection System (IDS) designed to confront cyber attacks using solely benign training data. HistCAN employs a hybrid encoder capable of simultaneously learning spatial and temporal features of the input data, exhibiting robust patterncapturing capabilities with a relatively compact parameter set. Additionally, a historical information fusion module is integrated into HistCAN, facilitating the capture of long-term dependencies and trends within the CAN ID series. Extensive experimental results demonstrate that HistCAN generally outperforms the compared baseline methods, achieving a high F1 score of 0.9954 in a purely self-supervised manner while satisfying real-time requirements.

View More Papers

PANDORA: Jailbreak GPTs by Retrieval Augmented Generation Poisoning

Gelei Deng, Yi Liu (Nanyang Technological University), Yuekang Li (The University of New South Wales), Wang Kailong(Huazhong University of Science and Technology), Tianwei Zhang, Yang Liu (Nanyang Technological University)

Read More

Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More

It’s Standards’ Time to Shine: Insights for IoT Cybersecurity...

Dr. Michael J. Fagan, National Institute of Standards and Technology

Read More