Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

NMFTA Best Short Paper Award Winner ($200 cash prize)!

Due to the absence of encryption and authentication mechanisms, the Controller Area Network (CAN) protocol, widely employed in in-vehicle networks, is susceptible to various cyber attacks. In safeguarding in-vehicle networks against cyber threats, numerous Machine Learning-based (ML) and Deep Learning-based (DL) anomaly detection methods have been proposed, demonstrating high accuracy and proficiency in capturing intricate data patterns. However, the majority of these methods are supervised and heavily reliant on labeled training datasets with known attack types, posing limitations in real-world scenarios where acquiring labeled attack data is challenging. In this paper, we present HistCAN, a lightweight and self-supervised Intrusion Detection System (IDS) designed to confront cyber attacks using solely benign training data. HistCAN employs a hybrid encoder capable of simultaneously learning spatial and temporal features of the input data, exhibiting robust patterncapturing capabilities with a relatively compact parameter set. Additionally, a historical information fusion module is integrated into HistCAN, facilitating the capture of long-term dependencies and trends within the CAN ID series. Extensive experimental results demonstrate that HistCAN generally outperforms the compared baseline methods, achieving a high F1 score of 0.9954 in a purely self-supervised manner while satisfying real-time requirements.

View More Papers

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More

TrustSketch: Trustworthy Sketch-based Telemetry on Cloud Hosts

Zhuo Cheng (Carnegie Mellon University), Maria Apostolaki (Princeton University), Zaoxing Liu (University of Maryland), Vyas Sekar (Carnegie Mellon University)

Read More

EMMasker: EM Obfuscation Against Website Fingerprinting

Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

Read More

Understanding Route Origin Validation (ROV) Deployment in the Real...

Lancheng Qin (Tsinghua University, BNRist), Li Chen (Zhongguancun Laboratory), Dan Li (Tsinghua University, Zhongguancun Laboratory), Honglin Ye (Tsinghua University), Yutian Wang (Tsinghua University)

Read More