Ali Shoker, Rehana Yasmin, Paulo Esteves-Verissimo (Resilient Computing & Cybersecurity Center (RC3), KAUST)

The increasing interest in Autonomous Vehicles (AVs) is notable, driven by economic, safety, and performance reasons. Despite the growing adoption of recent AV architectures hinging on the advanced AI models, there is a significant number of fatal incidents. This paper calls for the need to revisit the fundamentals of building safety-critical AV architectures for mainstream adoption of AVs. The key tenets are: (i) finding a balance between intelligence and trustworthiness, considering efficiency and functionality brought in by AI/ML, while prioritizing indispensable safety and security; (ii) developing an advanced architecture that addresses the hard challenge of reconciling the stochastic nature of AI/ML with the determinism of driving control theory. Introducing Savvy, a novel AV architecture leveraging the strengths of intelligence and trustworthiness, this paper advocates for a safety-first approach by integrating design-time (deterministic) control rules with optimized decisions generated by dynamic ML models, all within constrained time-safety bounds. Savvy prioritizes early identification of critical obstacles, like recognizing an elephant as an object, ensuring safety takes precedence over optimal recognition just before a collision. This position paper outlines Savvy’s motivations and concepts, with ongoing refinements and empirical evaluations in progress.

View More Papers

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

WIP: Augmenting Vehicle Safety With Passive BLE

Noah T. Curran (University of Michigan), Kang G. Shin (University of Michigan), William Hass (Lear Corporation), Lars Wolleschensky (Lear Corporation), Rekha Singoria (Lear Corporation), Isaac Snellgrove (Lear Corporation), Ran Tao (Lear Corporation)

Read More

TEE-SHirT: Scalable Leakage-Free Cache Hierarchies for TEEs

Kerem Arikan (Binghamton University), Abraham Farrell (Binghamton University), Williams Zhang Cen (Binghamton University), Jack McMahon (Binghamton University), Barry Williams (Binghamton University), Yu David Liu (Binghamton University), Nael Abu-Ghazaleh (University of California, Riverside), Dmitry Ponomarev (Binghamton University)

Read More