Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Due to the cyber-physical nature of robotic vehicles, security is especially crucial, as a compromised system not only exposes privacy and information leakage risks, but also increases the risk of harm in the physical world. As such, in this paper, we explore the current vulnerability landscape of robotic vehicles exposed to and thus remotely accessible by any party on the public Internet. Focusing particularly on instances of the Robot Operating System (ROS), a commonly used open-source robotic software framework, we performed new Internet-wide scans of the entire IPv4 address space, identifying, categorizing, and analyzing the ROS-based systems we discovered. We further performed the first measurement of ROS scanners in the wild by setting up ROS honeypots, logging traffic, and analyzing the traffic we received. We found over 190 ROS systems on average being regularly exposed to the public Internet and discovered new trends in the exposure of different types of robotic vehicles, suggesting increasing concern regarding the cybersecurity of today’s ROS-based robotic vehicle systems.

View More Papers

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More

DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

A Security and Usability Analysis of Local Attacks Against...

Tarun Kumar Yadav (Brigham Young University), Kent Seamons (Brigham Young University)

Read More