Rao Li (The Pennsylvania State University), Shih-Chieh Dai (Pennsylvania State University), Aiping Xiong (Penn State University)

Physical adversarial objects-evasion attacks pose a safety concern for automated driving systems (ADS) and are a significant obstacle to their widespread adoption. To enhance the ability of ADS to address such concerns, we aim to propose a human-AI collaboration framework to bring human in the loop to mitigate the attacks. In this WIP work, we investigate the performance of two object detectors in the YOLO-series (YOLOv5 and YOLOv8) against three physical adversarial object-evasion attacks across different driving contexts in the CARLA simulator. Using static images, we found that YOLOv8 generally outperformed YOLOv5 in attack detection but remained susceptible to certain attacks in specific contexts. Moreover, the study results showed that none of the attacks had achieved a high attack success rate in dynamic tests when system-level features were considered. Nevertheless, such detection results varied across different locations for each attack. Altogether, these results suggest that perception in autonomous driving, the same as human perception in manual driving, might also be context-dependent. Moreover, our results revealed object detection failures at a braking distance anticipated by human drivers, suggesting a necessity to involve human drivers in future evaluation processes.

View More Papers

Investigating the Impact of Evasion Attacks Against Automotive Intrusion...

Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More

Powers of Tau in Asynchrony

Sourav Das (University of Illinois at Urbana-Champaign), Zhuolun Xiang (Aptos), Ling Ren (University of Illinois at Urbana-Champaign)

Read More

Maginot Line: Assessing a New Cross-app Threat to PII-as-Factor...

Fannv He (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yan Jia (DISSec, College of Cyber Science, Nankai University, China), Jiayu Zhao (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yue Fang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China),…

Read More

UntrustIDE: Exploiting Weaknesses in VS Code Extensions

Elizabeth Lin (North Carolina State University), Igibek Koishybayev (North Carolina State University), Trevor Dunlap (North Carolina State University), William Enck (North Carolina State University), Alexandros Kapravelos (North Carolina State University)

Read More