Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

LiDAR (Light Detection and Ranging) is an essential sensor for autonomous driving (AD), increasingly being integrated not only in prototype vehicles but also in commodity vehicles. Due to its critical safety implications, recent studies have explored its security risks and exposed the potential vulnerability against LiDAR spoofing attacks, which manipulate measurement data by emitting malicious lasers into the LiDAR. Nevertheless, deploying LiDAR spoofing attacks against driving AD vehicles still has significant technical challenges particularly in accurately aiming at the LiDAR of a moving AV from the roadside. The current state-of-the-art attack can be successful only at ≤5 km/h. Motivated by this, we design novel tracking and aiming methodology and conduct a feasibility study to explore the actual practicality of LiDAR spoofing attacks against AD vehicles at cruising speeds. In this work, we report our initial results demonstrating that our object removal attack successfully makes the targeted pedestrian undetectable with ≥90% success rates in a real-world scenario where the adversary at the roadside attacks the victim AD approaching at 35 km/h. Finally, we discuss the current challenges and our future plans.

View More Papers

On the Feasibility of Profiling Electric Vehicles through Charging...

Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

Read More

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher (Graz University of Technology), Andreas Kogler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

A Two-Layer Blockchain Sharding Protocol Leveraging Safety and Liveness...

Yibin Xu (University of Copenhagen), Jingyi Zheng (University of Copenhagen), Boris Düdder (University of Copenhagen), Tijs Slaats (University of Copenhagen), Yongluan Zhou (University of Copenhagen)

Read More