Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

LiDAR (Light Detection and Ranging) is an essential sensor for autonomous driving (AD), increasingly being integrated not only in prototype vehicles but also in commodity vehicles. Due to its critical safety implications, recent studies have explored its security risks and exposed the potential vulnerability against LiDAR spoofing attacks, which manipulate measurement data by emitting malicious lasers into the LiDAR. Nevertheless, deploying LiDAR spoofing attacks against driving AD vehicles still has significant technical challenges particularly in accurately aiming at the LiDAR of a moving AV from the roadside. The current state-of-the-art attack can be successful only at ≤5 km/h. Motivated by this, we design novel tracking and aiming methodology and conduct a feasibility study to explore the actual practicality of LiDAR spoofing attacks against AD vehicles at cruising speeds. In this work, we report our initial results demonstrating that our object removal attack successfully makes the targeted pedestrian undetectable with ≥90% success rates in a real-world scenario where the adversary at the roadside attacks the victim AD approaching at 35 km/h. Finally, we discuss the current challenges and our future plans.

View More Papers

Separation is Good: A Faster Order-Fairness Byzantine Consensus

Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Read More

Information Based Heavy Hitters for Real-Time DNS Data Exfiltration...

Yarin Ozery (Ben-Gurion University of the Negev, Akamai Technologies inc.), Asaf Nadler (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev)

Read More

Compensating Removed Frequency Components: Thwarting Voice Spectrum Reduction Attacks

Shu Wang (George Mason University), Kun Sun (George Mason University), Qi Li (Tsinghua University)

Read More

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More