Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

LiDAR (Light Detection and Ranging) is an essential sensor for autonomous driving (AD), increasingly being integrated not only in prototype vehicles but also in commodity vehicles. Due to its critical safety implications, recent studies have explored its security risks and exposed the potential vulnerability against LiDAR spoofing attacks, which manipulate measurement data by emitting malicious lasers into the LiDAR. Nevertheless, deploying LiDAR spoofing attacks against driving AD vehicles still has significant technical challenges particularly in accurately aiming at the LiDAR of a moving AV from the roadside. The current state-of-the-art attack can be successful only at ≤5 km/h. Motivated by this, we design novel tracking and aiming methodology and conduct a feasibility study to explore the actual practicality of LiDAR spoofing attacks against AD vehicles at cruising speeds. In this work, we report our initial results demonstrating that our object removal attack successfully makes the targeted pedestrian undetectable with ≥90% success rates in a real-world scenario where the adversary at the roadside attacks the victim AD approaching at 35 km/h. Finally, we discuss the current challenges and our future plans.

View More Papers

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More

TextGuard: Provable Defense against Backdoor Attacks on Text Classification

Hengzhi Pei (UIUC), Jinyuan Jia (UIUC, Penn State), Wenbo Guo (UC Berkeley, Purdue University), Bo Li (UIUC), Dawn Song (UC Berkeley)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More