Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

LiDAR (Light Detection and Ranging) is an essential sensor for autonomous driving (AD), increasingly being integrated not only in prototype vehicles but also in commodity vehicles. Due to its critical safety implications, recent studies have explored its security risks and exposed the potential vulnerability against LiDAR spoofing attacks, which manipulate measurement data by emitting malicious lasers into the LiDAR. Nevertheless, deploying LiDAR spoofing attacks against driving AD vehicles still has significant technical challenges particularly in accurately aiming at the LiDAR of a moving AV from the roadside. The current state-of-the-art attack can be successful only at ≤5 km/h. Motivated by this, we design novel tracking and aiming methodology and conduct a feasibility study to explore the actual practicality of LiDAR spoofing attacks against AD vehicles at cruising speeds. In this work, we report our initial results demonstrating that our object removal attack successfully makes the targeted pedestrian undetectable with ≥90% success rates in a real-world scenario where the adversary at the roadside attacks the victim AD approaching at 35 km/h. Finally, we discuss the current challenges and our future plans.

View More Papers

Towards Integrating Human-Centered Cybersecurity Research Into Practice: A Practitioner...

Julie Haney, Clyburn Cunningham, Susanne Furman (National Institute of Standards and Technology)

Read More

AAKA: An Anti-Tracking Cellular Authentication Scheme Leveraging Anonymous Credentials

Hexuan Yu (Virginia Polytechnic Institute and State University), Changlai Du (Virginia Polytechnic Institute and State University), Yang Xiao (University of Kentucky), Angelos Keromytis (Georgia Institute of Technology), Chonggang Wang (InterDigital), Robert Gazda (InterDigital), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

Semi-Automated Synthesis of Driving Rules

Diego Ortiz, Leilani Gilpin, Alvaro A. Cardenas (University of California, Santa Cruz)

Read More

Location Spoofing Attacks on Autonomous Fleets

Jinghan Yang, Andew Estornell, Yevgeniy Vorobeychik (Washington University in St. Louis)

Read More