Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

LiDAR (Light Detection and Ranging) is an essential sensor for autonomous driving (AD), increasingly being integrated not only in prototype vehicles but also in commodity vehicles. Due to its critical safety implications, recent studies have explored its security risks and exposed the potential vulnerability against LiDAR spoofing attacks, which manipulate measurement data by emitting malicious lasers into the LiDAR. Nevertheless, deploying LiDAR spoofing attacks against driving AD vehicles still has significant technical challenges particularly in accurately aiming at the LiDAR of a moving AV from the roadside. The current state-of-the-art attack can be successful only at ≤5 km/h. Motivated by this, we design novel tracking and aiming methodology and conduct a feasibility study to explore the actual practicality of LiDAR spoofing attacks against AD vehicles at cruising speeds. In this work, we report our initial results demonstrating that our object removal attack successfully makes the targeted pedestrian undetectable with ≥90% success rates in a real-world scenario where the adversary at the roadside attacks the victim AD approaching at 35 km/h. Finally, we discuss the current challenges and our future plans.

View More Papers

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

Understanding Route Origin Validation (ROV) Deployment in the Real...

Lancheng Qin (Tsinghua University, BNRist), Li Chen (Zhongguancun Laboratory), Dan Li (Tsinghua University, Zhongguancun Laboratory), Honglin Ye (Tsinghua University), Yutian Wang (Tsinghua University)

Read More

CBAT: A Comparative Binary Analysis Tool

Chloe Fortuna (STR), JT Paasch (STR), Sam Lasser (Draper), Philip Zucker (Draper), Chris Casinghino (Jane Street), Cody Roux (AWS)

Read More

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More