Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

—Graphics processing units (GPUs) on modern computers are susceptible to electromagnetic (EM) side-channel attacks that can leak sensitive information without physical access to the target device. Website fingerprinting through these EM emanations poses a significant privacy threat, capable of revealing user activities from a distance. This paper introduces EMMasker, a novel software-based solution designed to mitigate such attacks by obfuscating the EM signals associated with web activity. EMMasker operates by generating rendering noise within the GPU using WebGL shaders, thereby disrupting the patterns of EM signals and confounding any attempts at identifying user online activities. Our approach strikes a balance between the effectiveness of obfuscation and system efficiency, ensuring minimal impact on GPU performance and user browsing experience. Our evaluation shows that EMMasker can significantly reduce the accuracy of state-of-the-art EM website fingerprinting attacks from average accuracy from 81.03% to 22.56%, without imposing a high resource overhead. Our results highlight the potential of EMMasker as a practical countermeasure against EM side-channel website fingerprinting attacks, enhancing privacy and security for web users.

View More Papers

Content Censorship in the InterPlanetary File System

Srivatsan Sridhar (Stanford University), Onur Ascigil (Lancaster University), Navin Keizer (University College London), François Genon (UCLouvain), Sébastien Pierre (UCLouvain), Yiannis Psaras (Protocol Labs), Etienne Riviere (UCLouvain), Michał Król (City, University of London)

Read More

A Cross-Verification Approach with Publicly Available Map for Detecting...

Takami Sato, Ningfei Wang (University of California, Irvine), Yueqiang Cheng (NIO Security Research), Qi Alfred Chen (University of California, Irvine)

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More