Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Object Security for Constrained RESTful Environments (OSCORE) is an end-to-end security solution for the Constrained Application Protocol (CoAP), which, in turn, is a lightweight application layer protocol for the Internet of things (IoT). The recently standardized Echo option allows OSCORE servers to check if a request was created recently. Previously, OSCORE only offered a counter-based replay protection, which is why delayed OSCORE requests were accepted as fresh. However, the Echo-based replay protection entails an additional round trip, thereby prolonging delays, increasing communication overhead, and deteriorating reliability. Moreover, OSCORE remains vulnerable to a denial-of-sleep attack. In this paper, we propose a version of OSCORE with a revised replay protection, namely OSCORE next-generation (OSCORE-NG). OSCORENG fixes OSCORE’s denial-of-sleep vulnerability and provides freshness guarantees that surpass those of the Echo-based replay protection, while dispensing with an additional round trip. Furthermore, in long-running sessions, OSCORE-NG incurs even less communication overhead than OSCORE’s counter-based replay protection. OSCORE-NG’s approach is to entangle timestamps in nonces. Except during synchronization, CoAP nodes truncate these timestamps in outgoing OSCORE-NG messages. Receivers fail to restore a timestamp if and only if an OSCORE-NG message is delayed by more than 7.848s in our implementation by default. In effect, older OSCORE-NG messages get rejected.

View More Papers

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More

Securing EV charging system against Physical-layer Signal Injection Attack...

Soyeon Son (Korea University) Kyungho Joo (Korea University) Wonsuk Choi (Korea University) Dong Hoon Lee (Korea University)

Read More

On Precisely Detecting Censorship Circumvention in Real-World Networks

Ryan Wails (Georgetown University, U.S. Naval Research Laboratory), George Arnold Sullivan (University of California, San Diego), Micah Sherr (Georgetown University), Rob Jansen (U.S. Naval Research Laboratory)

Read More

Timing Channels in Adaptive Neural Networks

Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Read More