Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Object Security for Constrained RESTful Environments (OSCORE) is an end-to-end security solution for the Constrained Application Protocol (CoAP), which, in turn, is a lightweight application layer protocol for the Internet of things (IoT). The recently standardized Echo option allows OSCORE servers to check if a request was created recently. Previously, OSCORE only offered a counter-based replay protection, which is why delayed OSCORE requests were accepted as fresh. However, the Echo-based replay protection entails an additional round trip, thereby prolonging delays, increasing communication overhead, and deteriorating reliability. Moreover, OSCORE remains vulnerable to a denial-of-sleep attack. In this paper, we propose a version of OSCORE with a revised replay protection, namely OSCORE next-generation (OSCORE-NG). OSCORENG fixes OSCORE’s denial-of-sleep vulnerability and provides freshness guarantees that surpass those of the Echo-based replay protection, while dispensing with an additional round trip. Furthermore, in long-running sessions, OSCORE-NG incurs even less communication overhead than OSCORE’s counter-based replay protection. OSCORE-NG’s approach is to entangle timestamps in nonces. Except during synchronization, CoAP nodes truncate these timestamps in outgoing OSCORE-NG messages. Receivers fail to restore a timestamp if and only if an OSCORE-NG message is delayed by more than 7.848s in our implementation by default. In effect, older OSCORE-NG messages get rejected.

View More Papers

TALISMAN: Tamper Analysis for Reference Monitors

Frank Capobianco (The Pennsylvania State University), Quan Zhou (The Pennsylvania State University), Aditya Basu (The Pennsylvania State University), Trent Jaeger (The Pennsylvania State University, University of California, Riverside), Danfeng Zhang (The Pennsylvania State University, Duke University)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

A Security and Usability Analysis of Local Attacks Against...

Tarun Kumar Yadav (Brigham Young University), Kent Seamons (Brigham Young University)

Read More