Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Electromagnetic (EM) side channel attacks (SCA) have been very powerful in extracting secret information from hardware systems. Existing attacks usually extract discrete values from the EM side channel, such as cryptographic key bits and operation types. In this work, we develop an EM SCA to extract continuous values that are being used in an averaging process, a common operation used in federated learning. A convolutional neural network (CNN) framework is constructed to analyze the collected EM data. Our results show that our attack is able to distinguish the distributions of the underlying data with up to 93% accuracy, indicating that applications previously considered as secure, such as federated learning, should be protected from EM side-channel attacks in their implementation.

View More Papers

WIP: A First Look At Employing Large Multimodal Models...

Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

Read More

QUACK: Hindering Deserialization Attacks via Static Duck Typing

Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Read More

ActiveDaemon: Unconscious DNN Dormancy and Waking Up via User-specific...

Ge Ren (Shanghai Jiao Tong University), Gaolei Li (Shanghai Jiao Tong University), Shenghong Li (Shanghai Jiao Tong University), Libo Chen (Shanghai Jiao Tong University), Kui Ren (Zhejiang University)

Read More

You Can Use But Cannot Recognize: Preserving Visual Privacy...

Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Read More