Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

As the integration of Internet of Things devices continues to increase, the security challenges associated with autonomous, self-executing Internet of Things devices become increasingly critical. This research addresses the vulnerability of deep learning-based malware threat-hunting models, particularly in the context of Industrial Internet of Things environments. The study introduces an innovative adversarial machine learning attack model tailored for generating adversarial payloads at the bytecode level of executable files.

Our investigation focuses on the Malconv malware threat hunting model, employing the Fast Gradient Sign methodology as the attack model to craft adversarial instances. The proposed methodology is systematically evaluated using a comprehensive dataset sourced from instances of cloud-edge Internet of Things malware. The empirical findings reveal a significant reduction in the accuracy of the malware threat-hunting model, plummeting from an initial 99% to 82%. Moreover, our proposed approach sheds light on the effectiveness of adversarial attacks leveraging code repositories, showcasing their ability to evade AI-powered malware threat-hunting mechanisms.

This work not only offers a practical solution for bolstering deep learning-based malware threat-hunting models in Internet of Things environments but also underscores the pivotal role of code repositories as a potential attack vector. The outcomes of this investigation emphasize the imperative need to recognize code repositories as a distinct attack surface within the landscape of malware threat-hunting models deployed in the Internet of Things environments.

View More Papers

VPN Awareness and Misconceptions: A Comparative Study in Canadian...

Lachlan Moore, Tatsuya Mori (Waseda University, NICT)

Read More

LoRDMA: A New Low-Rate DoS Attack in RDMA Networks

Shicheng Wang (Tsinghua University), Menghao Zhang (Beihang University & Infrawaves), Yuying Du (Information Engineering University), Ziteng Chen (Southeast University), Zhiliang Wang (Tsinghua University & Zhongguancun Laboratory), Mingwei Xu (Tsinghua University & Zhongguancun Laboratory), Renjie Xie (Tsinghua University), Jiahai Yang (Tsinghua University & Zhongguancun Laboratory)

Read More

MirageFlow: A New Bandwidth Inflation Attack on Tor

Christoph Sendner (University of Würzburg), Jasper Stang (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Raveen Wijewickrama (University of Texas at San Antonio), Murtuza Jadliwala (University of Texas at San Antonio)

Read More

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu (Indiana University Bloominton), Di Tang (Indiana University Bloomington), Siyuan Tang (Indiana University Bloomington), Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang (Indiana University Bloomington), Haixu Tang (Indiana University, Bloomington)

Read More