Elina van Kempen, Zane Karl, Richard Deamicis, Qi Alfred Chen (UC Irivine)

Biometric authentication systems, such as fingerprint scanning or facial recognition, are now commonplace and available on the majority of new smartphones and laptops. With the development of tablet-digital pen systems, the deployment of handwriting authentication is to be considered.

In this paper, we evaluate the viability of using the dynamic properties of handwriting, provided by the Apple Pencil, to distinguish and authenticate individuals. Following the data collection phase involving 30 participants, we examined the accuracy of time-series classification models on different inputs and on textindependent against text-dependent authentication, and we analyzed the effect of handwriting forgery. Additionally, participants completed a user survey to gather insight on the public reception of handwriting authentication. While classification models proved to have high accuracy, above 99% in many cases, and participants had a globally positive view of handwriting authentication, the models were not always robust against forgeries, with up to 21.3% forgery success rate. Overall, participants were positive about using handwriting authentication but showed some concern regarding its privacy and security impacts.

View More Papers

Sharing cyber threat intelligence: Does it really help?

Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

Read More

WIP: Adversarial Retroreflective Patches: A Novel Stealthy Attack on...

Go Tsuruoka (Waseda University), Takami Sato, Qi Alfred Chen (University of California, Irvine), Kazuki Nomoto, Ryunosuke Kobayashi, Yuna Tanaka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More