Xinyao Ma, Ambarish Aniruddha Gurjar, Anesu Christopher Chaora, Tatiana R Ringenberg, L. Jean Camp (Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington)

This study delves into the crucial role of developers in identifying privacy sensitive information in code. The context informs the research of diverse global data protection regulations, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). It specifically investigates programmers’ ability to discern the sensitivity level of data processing in code, a task of growing importance given the increasing legislative demands for data privacy.

We conducted an online card-sorting experiment to explore how the participating programmers across a range of expertise perceive the sensitivity of variable names in code snippets. Our study evaluates the accuracy, feasibility, and reliability of our participating programmers in determining what constitutes a ’sensitive’ variable. We further evaluate if there is a consensus among programmers, how their level of security knowledge influences any consensus, and whether any consensus or impact of expertise is consistent across different categories of variables. Our findings reveal a lack of consistency among participants regarding the sensitivity of processing different types of data, as indicated by snippets of code with distinct variable names. There remains a significant divergence in opinions, particularly among those with more technical expertise. As technical expertise increases, consensus decreases across the various categories of sensitive data. This study not only sheds light on the current state of programmers’ privacy awareness but also motivates the need for developing better industry practices and tools for automatically identifying sensitive data in code.

View More Papers

A Study on Security and Privacy Practices in Danish...

Asmita Dalela (IT University of Copenhagen), Saverio Giallorenzo (Department of Computer Science and Engineering - University of Bologna), Oksana Kulyk (ITU Copenhagen), Jacopo Mauro (University of Southern Denmark), Elda Paja (IT University of Copenhagen)

Read More

WIP: Adversarial Retroreflective Patches: A Novel Stealthy Attack on...

Go Tsuruoka (Waseda University), Takami Sato, Qi Alfred Chen (University of California, Irvine), Kazuki Nomoto, Ryunosuke Kobayashi, Yuna Tanaka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

Overconfidence is a Dangerous Thing: Mitigating Membership Inference Attacks...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning Attacks...

Hossein Fereidooni (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More