James Fitts, Chris Fennel (Walmart)

Red Team campaigns simulate real adversaries and provide real value to the organization by exposing vulnerable infrastructure and processes that need to be improved. The challenge is that as organizations scale in size, time between campaign retesting increases. This can lead to gaps in ensuring coverage and finding emerging issues. Automation and simulation of adversarial attacks can be created to address the scale problem. Collecting libraries of Tactics, Techniques and Procedures (TTPs) and testing them via adversarial emulation software. Unfortunately, automation lacks feedback and cannot analyze the data in real time with each test.

To address this problem, we introduce RAMPART (Repeated And Measured Post Access Red Teaming). RAMPART campaigns are very quick campaigns (1 day) meant to bridge the gap between the automation of Red Team simulations and full blown Red Team campaigns. The speed of these campaigns comes from pre-built playbooks backed by Cyber Threat Intelligence (CTI) research. This approach enables a level of freedom to make decisions based on the data the red team analyst sees from their tooling and allows testing further in the attack chain to test detections that could be missed otherwise.

View More Papers

Space-Domain AI Applications need Rigorous Security Risk Analysis

Alexandra Weber (Telespazio Germany GmbH), Peter Franke (Telespazio Germany GmbH)

Read More

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More

A Two-Layer Blockchain Sharding Protocol Leveraging Safety and Liveness...

Yibin Xu (University of Copenhagen), Jingyi Zheng (University of Copenhagen), Boris Düdder (University of Copenhagen), Tijs Slaats (University of Copenhagen), Yongluan Zhou (University of Copenhagen)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More