James Fitts, Chris Fennel (Walmart)

Red Team campaigns simulate real adversaries and provide real value to the organization by exposing vulnerable infrastructure and processes that need to be improved. The challenge is that as organizations scale in size, time between campaign retesting increases. This can lead to gaps in ensuring coverage and finding emerging issues. Automation and simulation of adversarial attacks can be created to address the scale problem. Collecting libraries of Tactics, Techniques and Procedures (TTPs) and testing them via adversarial emulation software. Unfortunately, automation lacks feedback and cannot analyze the data in real time with each test.

To address this problem, we introduce RAMPART (Repeated And Measured Post Access Red Teaming). RAMPART campaigns are very quick campaigns (1 day) meant to bridge the gap between the automation of Red Team simulations and full blown Red Team campaigns. The speed of these campaigns comes from pre-built playbooks backed by Cyber Threat Intelligence (CTI) research. This approach enables a level of freedom to make decisions based on the data the red team analyst sees from their tooling and allows testing further in the attack chain to test detections that could be missed otherwise.

View More Papers

OCPPStorm: A Comprehensive Fuzzing Tool for OCPP Implementations (Long)

Gaetano Coppoletta (University of Illinois Chicago), Rigel Gjomemo (Discovery Partners Institute, University of Illinois), Amanjot Kaur, Nima Valizadeh (Cardiff University), Venkat Venkatakrishnan (Discovery Partners Institute, University of Illinois), Omer Rana (Cardiff University)

Read More

Benchmarking transferable adversarial attacks

Zhibo Jin (The University of Sydney), Jiayu Zhang (Suzhou Yierqi), Zhiyu Zhu, Huaming Chen (The University of Sydney)

Read More

WIP: An Adaptive High Frequency Removal Attack to Bypass...

Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More