Jian Cui (Indiana University Bloomington)

Twitter has been recognized as a highly valuable source for security practitioners, offering timely updates on breaking events and threat analyses. Current methods for automating event detection on Twitter rely on standard text embedding techniques to cluster tweets. However, these methods are not effective as standard text embeddings are not specifically designed for clustering security-related tweets. To tackle this, our paper introduces a novel method for creating custom embeddings that improve the accuracy and comprehensiveness of security event detection on Twitter. This method integrates patterns of security-related entity sharing between tweets into the embedding process, resulting in higher-quality embeddings that significantly enhance precision and coverage in identifying security events.

View More Papers

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

BGP-iSec: Improved Security of Internet Routing Against Post-ROV Attacks

Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

Read More

The Fault in Our Stars: An Analysis of GitHub...

Simon Koch, David Klein, and Martin Johns (TU Braunschweig)

Read More

Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural...

Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Read More