Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

The advent of deep learning has brought about vast improvements to computer vision systems and facilitated the development of self-driving vehicles. Nevertheless, these models have been found to be susceptible to adversarial attacks. Of particular importance to the research community are patch attacks, which have been found to be realizable in the physical world. While certifiable defenses against patch attacks have been developed for tasks such as single-label classification, there does not exist a defense for multi-label classification. In this work, we propose such a defense called Multi-Label PatchCleanser, an extension of the current state-of-the-art (SOTA) method for single-label classification. We find that our approach can achieve non-trivial robustness on the MSCOCO 2014 validation dataset while maintaining high clean performance. Additionally, we leverage a key constraint between patch and object locations to develop a novel procedure and improve upon baseline robust performance.

View More Papers

AAKA: An Anti-Tracking Cellular Authentication Scheme Leveraging Anonymous Credentials

Hexuan Yu (Virginia Polytechnic Institute and State University), Changlai Du (Virginia Polytechnic Institute and State University), Yang Xiao (University of Kentucky), Angelos Keromytis (Georgia Institute of Technology), Chonggang Wang (InterDigital), Robert Gazda (InterDigital), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable...

Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang…

Read More