Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

The advent of deep learning has brought about vast improvements to computer vision systems and facilitated the development of self-driving vehicles. Nevertheless, these models have been found to be susceptible to adversarial attacks. Of particular importance to the research community are patch attacks, which have been found to be realizable in the physical world. While certifiable defenses against patch attacks have been developed for tasks such as single-label classification, there does not exist a defense for multi-label classification. In this work, we propose such a defense called Multi-Label PatchCleanser, an extension of the current state-of-the-art (SOTA) method for single-label classification. We find that our approach can achieve non-trivial robustness on the MSCOCO 2014 validation dataset while maintaining high clean performance. Additionally, we leverage a key constraint between patch and object locations to develop a novel procedure and improve upon baseline robust performance.

View More Papers

Work-in-Progress: Manifest V3 Unveiled: Navigating the New Era of...

Nikolaos Pantelaios and Alexandros Kapravelos (North Carolina State University)

Read More

Pisces: Private and Compliable Cryptocurrency Exchange

Ya-Nan Li (The University of Sydney), Tian Qiu (The University of Sydney), Qiang Tang (The University of Sydney)

Read More

A Comparison of Three Approaches to Assist Users in...

Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Read More

VPN Awareness and Misconceptions: A Comparative Study in Canadian...

Lachlan Moore, Tatsuya Mori (Waseda University, NICT)

Read More