Zhuo Chen, Jiawei Liu, Haotan Liu (Wuhan University)

Neural network models have been widely applied in the field of information retrieval, but their vulnerability has always been a significant concern. In retrieval of public topics, the problems posed by the vulnerability are not only returning inaccurate or irrelevant content, but also returning manipulated opinions. One can distort the original ranking order based on the stance of the retrieved opinions, potentially influencing the searcher’s perception of the topic, weakening the reliability of retrieval results and damaging the fairness of opinion ranking. Based on the aforementioned challenges, we combine stance detection methods with existing text ranking manipulation methods to experimentally demonstrate the feasibility and threat of opinion manipulation. Then we design a user experiment in which each participant independently rated the credibility of the target topic based on the unmanipulated or manipulated retrieval results. The experimental result indicates that opinion manipulation can effectively influence people’s perceptions of the target topic. Furthermore, we preliminarily propose countermeasures to address the issue of opinion manipulation and build more reliable and fairer retrieval ranking systems.

View More Papers

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Certificate Transparency Revisited: The Public Inspections on Third-party Monitors

Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of…

Read More

Efficient and Timely Revocation of V2X Credentials

Gianluca Scopelliti (Ericsson & KU Leuven), Christoph Baumann (Ericsson), Fritz Alder (KU Leuven), Eddy Truyen (KU Leuven), Jan Tobias Mühlberg (Université libre de Bruxelles & KU Leuven)

Read More

Low-Quality Training Data Only? A Robust Framework for Detecting...

Yuqi Qing (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Xinhao Deng (Tsinghua University), Yihao Chen (Tsinghua University), Zhuotao Liu (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Jia Zhang (Tsinghua University), Qi Li (Tsinghua University)

Read More