Gelei Deng, Yi Liu (Nanyang Technological University), Yuekang Li (The University of New South Wales), Wang Kailong(Huazhong University of Science and Technology), Tianwei Zhang, Yang Liu (Nanyang Technological University)

Large Language Models (LLMs) have gained immense popularity and are being increasingly applied in various domains. Consequently, ensuring the security of these models is of paramount importance. Jailbreak attacks, which manipulate LLMs to generate malicious content, are recognized as a significant vulnerability. While existing research has predominantly focused on direct jailbreak attacks on LLMs, there has been limited exploration of indirect methods. The integration of various plugins into LLMs, notably Retrieval Augmented Generation (RAG), which enables LLMs to incorporate external knowledge bases into their response generation such as GPTs, introduces new avenues for indirect jailbreak attacks.

To fill this gap, we investigate indirect jailbreak attacks on LLMs, particularly GPTs, introducing a novel attack vector named Retrieval Augmented Generation Poisoning. This method, PANDORA, exploits the synergy between LLMs and RAG through prompt manipulation to generate unexpected responses. PANDORA uses maliciously crafted content to influence the RAG process, effectively initiating jailbreak attacks. Our preliminary tests show that PANDORA successfully conducts jailbreak attacks in four different scenarios, achieving higher success rates than direct attacks, with 64.3% for GPT-3.5 and 34.8% for GPT-4.

View More Papers

Secret-Shared Shuffle with Malicious Security

Xiangfu Song (National University of Singapore), Dong Yin (Ant Group), Jianli Bai (The University of Auckland), Changyu Dong (Guangzhou University), Ee-Chien Chang (National University of Singapore)

Read More

Transpose Attack: Stealing Datasets with Bidirectional Training

Guy Amit (Ben-Gurion University), Moshe Levy (Ben-Gurion University), Yisroel Mirsky (Ben-Gurion University)

Read More

IRRedicator: Pruning IRR with RPKI-Valid BGP Insights

Minhyeok Kang (Seoul National University), Weitong Li (Virginia Tech), Roland van Rijswijk-Deij (University of Twente), Ted "Taekyoung" Kwon (Seoul National University), Taejoong Chung (Virginia Tech)

Read More

Free Proxies Unmasked: A Vulnerability and Longitudinal Analysis of...

Naif Mehanna (Univ. Lille / Inria / CNRS), Walter Rudametkin (IRISA / Univ Rennes), Pierre Laperdrix (CNRS, Univ Lille, Inria Lille), and Antoine Vastel (Datadome)

Read More