Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Efficient prediction of default risk for bond-issuing enterprises is pivotal for maintaining stability and fostering growth in the bond market. Conventional methods usually rely solely on an enterprise’s internal data for risk assessment. In contrast, graph-based techniques leverage interconnected corporate information to enhance default risk identification for targeted bond issuers. Traditional graph techniques such as label propagation algorithm or deepwalk fail to effectively integrate a enterprise’s inherent attribute information with its topological network data. Additionally, due to data scarcity and security privacy concerns between enterprises, end-to-end graph neural network (GNN) algorithms may struggle in delivering satisfactory performance for target tasks. To address these challenges, we present a novel two-stage model. In the first stage, we employ an innovative Masked Autoencoders for Heterogeneous Graph (HGMAE) to pre-train on a vast enterprise knowledge graph. Subsequently, in the second stage, a specialized classifier model is trained to predict default risk propagation probabilities. The classifier leverages concatenated feature vectors derived from the pre-trained encoder with the enterprise’s task-specific feature vectors. Through the two-stage training approach, our model not only boosts the importance of unique bond characteristics for specific default prediction tasks, but also securely and efficiently leverage the global information pre-trained from other enterprises. Experimental results demonstrate that our proposed model outperforms existing approaches in predicting default risk for bond issuers.

View More Papers

HistCAN: A real-time CAN IDS with enhanced historical traffic...

Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

Programmer's Perception of Sensitive Information in Code

Xinyao Ma, Ambarish Aniruddha Gurjar, Anesu Christopher Chaora, Tatiana R Ringenberg, L. Jean Camp (Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington)

Read More

Connecting the Dots in the Sky: Website Fingerprinting in...

Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Read More