Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Efficient prediction of default risk for bond-issuing enterprises is pivotal for maintaining stability and fostering growth in the bond market. Conventional methods usually rely solely on an enterprise’s internal data for risk assessment. In contrast, graph-based techniques leverage interconnected corporate information to enhance default risk identification for targeted bond issuers. Traditional graph techniques such as label propagation algorithm or deepwalk fail to effectively integrate a enterprise’s inherent attribute information with its topological network data. Additionally, due to data scarcity and security privacy concerns between enterprises, end-to-end graph neural network (GNN) algorithms may struggle in delivering satisfactory performance for target tasks. To address these challenges, we present a novel two-stage model. In the first stage, we employ an innovative Masked Autoencoders for Heterogeneous Graph (HGMAE) to pre-train on a vast enterprise knowledge graph. Subsequently, in the second stage, a specialized classifier model is trained to predict default risk propagation probabilities. The classifier leverages concatenated feature vectors derived from the pre-trained encoder with the enterprise’s task-specific feature vectors. Through the two-stage training approach, our model not only boosts the importance of unique bond characteristics for specific default prediction tasks, but also securely and efficiently leverage the global information pre-trained from other enterprises. Experimental results demonstrate that our proposed model outperforms existing approaches in predicting default risk for bond issuers.

View More Papers

Modeling and Detecting Internet Censorship Events

Elisa Tsai (University of Michigan), Ram Sundara Raman (University of Michigan), Atul Prakash (University of Michigan), Roya Ensafi (University of Michigan)

Read More

MadRadar: A Black-Box Physical Layer Attack Framework on mmWave...

David Hunt (Duke University), Kristen Angell (Duke University), Zhenzhou Qi (Duke University), Tingjun Chen (Duke University), Miroslav Pajic (Duke University)

Read More

On the Security of Satellite-Based Air Traffic Control

Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Read More

SURGEON: Performant, Flexible and Accurate Re-Hosting via Transplantation

Florian Hofhammer (EPFL), Marcel Busch (EPFL), Qinying Wang (EPFL and Zhejiang University), Manuel Egele (Boston University), Mathias Payer (EPFL)

Read More