Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

The vision-based perception modules in autonomous vehicles (AVs) are prone to physical adversarial patch attacks. However, most existing attacks indiscriminately affect all passing vehicles. This paper introduces L-HAWK, a novel controllable physical adversarial patch activated by long-distance laser signals. L-HAWK is designed to target specific vehicles when the adversarial patch is triggered by laser signals while remaining benign under normal conditions. To achieve this goal and address the unique challenges associated with laser signals, we propose an asynchronous learning method for L-HAWK to determine the optimal laser parameters and the corresponding adversarial patch. To enhance the attack robustness in real-world scenarios, we introduce a multi-angle and multi-position simulation mechanism, a noise approximation approach, and a progressive sampling-based method. L-HAWK has been validated through extensive experiments in both digital and physical environments. Compared to a 59% success rate of TPatch (Usenix ’23) at 7 meters, L-HAWK achieves a 91.9% average attack success rate at 50 meters. This represents a 56% improvement in attack success rate and a more than sevenfold increase in attack distance.

View More Papers

Starshields for iOS: Navigating the Security Cosmos in Satellite...

Jiska Classen (Hasso Plattner Institute, University of Potsdam), Alexander Heinrich (TU Darmstadt, Germany), Fabian Portner (TU Darmstadt, Germany), Felix Rohrbach (TU Darmstadt, Germany), Matthias Hollick (TU Darmstadt, Germany)

Read More

All your (data)base are belong to us: Characterizing Database...

Kevin van Liebergen (IMDEA Software Institute), Gibran Gomez (IMDEA Software Institute), Srdjan Matic (IMDEA Software Institute), Juan Caballero (IMDEA Software Institute)

Read More

Ctrl+Alt+Deceive: Quantifying User Exposure to Online Scams

Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Read More