Jiska Classen (Hasso Plattner Institute, University of Potsdam), Alexander Heinrich (TU Darmstadt, Germany), Fabian Portner (TU Darmstadt, Germany), Felix Rohrbach (TU Darmstadt, Germany), Matthias Hollick (TU Darmstadt, Germany)

Apple has integrated satellite communication into their latest iPhones, enabling emergency communication, road- side assistance, location sharing with friends, iMessage, and SMS. This technology allows communication when other wireless services are unavailable. However, the use of satellites poses restrictions on bandwidth and delay, making it difficult to use modern communication protocols with their security and privacy guarantees. To overcome these challenges, Apple designed and implemented a proprietary satellite communication protocol to address these limitations. We are the first to successfully reverse-engineer this protocol and analyze its security and privacy properties. In addition, we develop a simulation-based testbed for testing emergency services without causing emergency calls. Our tests reveal protocol and infrastructure design issues. For example, compact protocol messages come at the cost of missing integrity protection and require an internet-based setup phase. We further demonstrate various restriction bypasses, such as misusing location sharing to send arbitrary text messages on old iOS versions, and sending iMessages over satellite from region-locked countries. These bypasses allow us to overcome censorship and operator control of text messaging services.

View More Papers

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More

The Road to Trust: Building Enclaves within Confidential VMs

Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering,…

Read More

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More