Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Address Space Layout Randomization (ASLR) is one of the most prominently deployed mitigations against memory corruption attacks. ASLR randomly shuffles program virtual addresses to prevent attackers from knowing the location of program contents in memory. Microarchitectural side channels have been shown to defeat ASLR through various hardware mechanisms. We systematically analyze existing microarchitectural attacks and identify multiple leakage paths. Given the vast attack surface exposed by ASLR, it is challenging to effectively prevent leaking the ASLR secret against microarchitectural attacks.

Motivated by this, we present Oreo, a software-hardware co-design mitigation that strengthens ASLR against these attacks. Oreo uses a new memory mapping interface to remove secret randomized bits in virtual addresses before translating them to their corresponding physical addresses. This extra step hides randomized virtual addresses from microarchitecture structures, preventing side channels from leaking ASLR secrets. Oreo is transparent to user programs and incurs low overhead. We prototyped and evaluated our design on Linux using the hardware simulator gem5.

View More Papers

Automated Mass Malware Factory: The Convergence of Piggybacking and...

Heng Li (Huazhong University of Science and Technology), Zhiyuan Yao (Huazhong University of Science and Technology), Bang Wu (Huazhong University of Science and Technology), Cuiying Gao (Huazhong University of Science and Technology), Teng Xu (Huazhong University of Science and Technology), Wei Yuan (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

Understanding reCAPTCHAv2 via a Large-Scale Live User Study

Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Read More

On the Robustness of LDP Protocols for Numerical Attributes...

Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Read More

NDSS Symposium 2025 Welcome and Opening Remarks

General Chairs: David Balenson, USC Information Sciences Institute and Heng Yin, University of California, Riverside Program Chairs: Christina Pöpper, New York University Abu Dhabi and Hamed Okhravi, MIT Lincoln Laboratory Artifact Evaluation Chairs: Daniele Cono D’Elia, Sapienza University and Mathy Vanhoef, KU Leuven

Read More