Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Decompilation aims to recover the source code form of a binary executable. It has many security applications, such as malware analysis, vulnerability detection, and code hardening. A prominent challenge in decompilation is to recover variable names. We propose a novel technique that leverages the strengths of generative models while mitigating model biases. We build a prototype, GenNm, from pre-trained generative models CodeGemma-2B, CodeLlama-7B, and CodeLlama-34B. We finetune GenNm on decompiled functions and teach models to leverage contextual information. GenNm includes names from callers and callees while querying a function, providing rich contextual information within the model's input token limitation. We mitigate model biases by aligning the output distribution of models with symbol preferences of developers. Our results show that GenNm improves the state-of-the-art name recovery precision by 5.6-11.4 percentage points on two commonly used datasets and improves the state-of-the-art by 32% (from 17.3% to 22.8%) in the most challenging setup where ground-truth variable names are not seen in the training dataset.

View More Papers

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

MTZK: Testing and Exploring Bugs in Zero-Knowledge (ZK) Compilers

Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

LLMPirate: LLMs for Black-box Hardware IP Piracy

Vasudev Gohil (Texas A&M University), Matthew DeLorenzo (Texas A&M University), Veera Vishwa Achuta Sai Venkat Nallam (Texas A&M University), Joey See (Texas A&M University), Jeyavijayan Rajendran (Texas A&M University)

Read More

PolicyPulse: Precision Semantic Role Extraction for Enhanced Privacy Policy...

Andrick Adhikari (University of Denver), Sanchari Das (University of Denver), Rinku Dewri (University of Denver)

Read More