Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shoumeng Yan (Ant Group), XiaoFeng Wang (Indiana University Bloomington), Dan Meng (Institute of Information Engineering, CAS), Rui Hou (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS)

Integrity is critical for maintaining system security, as it ensures that only genuine software is loaded onto a machine. Although confidential virtual machines (CVMs) function within isolated environments separate from the host, it is important to recognize that users still encounter challenges in maintaining control over the integrity of the code running within the trusted execution environments (TEEs). The presence of a sophisticated operating system (OS) raises the possibility of dynamically creating and executing any code, making user applications within TEEs vulnerable to interference or tampering if the guest OS is compromised.

To address this issue, this paper introduces NestedSGX, a framework which leverages virtual machine privilege level (VMPL), a recent hardware feature available on AMD SEV-SNP to enable the creation of hardware enclaves within the guest VM. Similar to Intel SGX, NestedSGX considers the guest OS untrusted for loading potentially malicious code. It ensures that only trusted and measured code executed within the enclave can be remotely attested. To seamlessly protect existing applications, NestedSGX aims for compatibility with Intel SGX by simulating SGX leaf functions. We have also ported the SGX SDK and the Occlum library OS to NestedSGX, enabling the use of existing SGX toolchains and applications in the system. Performance evaluations show that context switches in NestedSGX take about 32,000 -- 34,000 cycles, approximately $1.9times$ -- $2.1times$ higher than that of Intel SGX. NestedSGX incurs minimal overhead in most real-world applications, with an average overhead below 2% for computation and memory intensive workloads and below 15.68% for I/O intensive workloads.

View More Papers

Understanding reCAPTCHAv2 via a Large-Scale Live User Study

Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Read More

Modeling End-User Affective Discomfort With Mobile App Permissions Across...

Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Read More

LLM-xApp: A Large Language Model Empowered Radio Resource Management...

Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More