Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Memes have become a double-edged sword on social media platforms. On one hand, they facilitate the rapid dissemination of information and enhance communication. On the other hand, memes pose a risk of spreading harmful content under the guise of humor and virality. This duality highlights the need to develop effective moderation tools capable of identifying harmful memes. Current detection methods, however, face significant challenges in identifying harmful memes due to their inherent complexity. This complexity arises from the diverse forms of expression, intricate compositions, sophisticated propaganda techniques, and varied cultural contexts in which memes are created and circulated. These factors make it difficult for existing algorithms to distinguish between harmless and harmful content accurately. To understand and address these challenges, we first conduct a comprehensive study on harmful memes from two novel perspectives: visual arts and propaganda techniques. It aims to assess existing tools for detecting harmful memes and understand the complexities inherent in them. Our findings demonstrate that meme compositions and propaganda techniques can significantly diminish the effectiveness of current harmful meme detection methods. Inspired by our observations and understanding of harmful memes, we propose a novel framework called HMGUARD for effective detection of harmful memes. HMGUARD utilizes adaptive prompting and chain-of-thought (CoT) reasoning in multimodal large language models (MLLMs). HMGUARD has demonstrated remarkable performance on the public harmful meme dataset, achieving an accuracy of 0.92. Compared to the baseline, HMGUARD represents a substantial improvement, with accuracy exceeding the baselines by 15% to 79.17%. Additionally, HMGUARD outperforms existing detection tools, achieving an impressive accuracy of 0.88 in real-world scenarios.

View More Papers

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More

Balancing Privacy and Data Utilization: A Comparative Vignette Study...

Leona Lassak (Ruhr University Bochum), Hanna Püschel (TU Dortmund University), Oliver D. Reithmaier (Leibniz University Hannover), Tobias Gostomzyk (TU Dortmund University), Markus Dürmuth (Leibniz University Hannover)

Read More

Privacy Preserved Integrated Big Data Analytics Framework Using Federated...

Sarah Kaleem (Prince Sultan University, PSU) Awais Ahmad (Imam Mohammad Ibn Saud Islamic University, IMSIU), Muhammad Babar (Prince Sultan University, PSU), Goutham Reddy Alavalapati (University of Illinois, Springfield)

Read More

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More