Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Nowadays, software development progresses
rapidly to incorporate new features. To facilitate such growth
and provide convenience for developers when creating and
updating software, reusing open-source software (i.e., thirdparty
library reuses) has become one of the most effective
and efficient methods. Unfortunately, the practice of reusing
third-party libraries (TPLs) can also introduce vulnerabilities
(known as 1-day vulnerabilities) because of the low maintenance
of TPLs, resulting in many vulnerable versions remaining in
use. If the software incorporating these TPLs fails to detect the
introduced vulnerabilities and leads to delayed updates, it will
exacerbate the security risks. However, the complicated code
dependencies and flexibility of TPL reuses make the detection of
1-day vulnerability a challenging task. To support developers in
securely reusing TPLs during software development, we design
and implement VULTURE, an effective and efficient detection
tool, aiming at identifying 1-day vulnerabilities that arise from
the reuse of vulnerable TPLs. It first executes a database creation
method, TPLFILTER, which leverages the Large Language
Model (LLM) to automatically build a unique database for the
targeted platform. Instead of relying on code-level similarity
comparison, VULTURE employs hashing-based comparison to
explore the dependencies among the collected TPLs and identify
the similarities between the TPLs and the target projects.
Recognizing that developers have the flexibility to reuse TPLs
exactly or in a custom manner, VULTURE separately conducts
version-based comparison and chunk-based analysis to capture
fine-grained semantic features at the function levels. We applied
VULTURE to 10 real-world projects to assess its effectiveness
and efficiency in detecting 1-day vulnerabilities. VULTURE
successfully identified 175 vulnerabilities from 178 reused TPLs.

View More Papers

KernelSnitch: Side Channel-Attacks on Kernel Data Structures

Lukas Maar (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Thomas Steinbauer (Graz University of Technology), Daniel Gruss (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

Secure Data Analytics in Apache Spark with Fine-grained Policy...

Byeongwook Kim (Seoul National University), Jaewon Hur (Seoul National University), Adil Ahmad (Arizona State University), Byoungyoung Lee (Seoul National University)

Read More

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

NDSS Symposium 2025 Welcome and Opening Remarks

General Chairs: David Balenson, USC Information Sciences Institute and Heng Yin, University of California, Riverside Program Chairs: Christina Pöpper, New York University Abu Dhabi and Hamed Okhravi, MIT Lincoln Laboratory Artifact Evaluation Chairs: Daniele Cono D’Elia, Sapienza University and Mathy Vanhoef, KU Leuven

Read More