Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Nowadays, software development progresses
rapidly to incorporate new features. To facilitate such growth
and provide convenience for developers when creating and
updating software, reusing open-source software (i.e., thirdparty
library reuses) has become one of the most effective
and efficient methods. Unfortunately, the practice of reusing
third-party libraries (TPLs) can also introduce vulnerabilities
(known as 1-day vulnerabilities) because of the low maintenance
of TPLs, resulting in many vulnerable versions remaining in
use. If the software incorporating these TPLs fails to detect the
introduced vulnerabilities and leads to delayed updates, it will
exacerbate the security risks. However, the complicated code
dependencies and flexibility of TPL reuses make the detection of
1-day vulnerability a challenging task. To support developers in
securely reusing TPLs during software development, we design
and implement VULTURE, an effective and efficient detection
tool, aiming at identifying 1-day vulnerabilities that arise from
the reuse of vulnerable TPLs. It first executes a database creation
method, TPLFILTER, which leverages the Large Language
Model (LLM) to automatically build a unique database for the
targeted platform. Instead of relying on code-level similarity
comparison, VULTURE employs hashing-based comparison to
explore the dependencies among the collected TPLs and identify
the similarities between the TPLs and the target projects.
Recognizing that developers have the flexibility to reuse TPLs
exactly or in a custom manner, VULTURE separately conducts
version-based comparison and chunk-based analysis to capture
fine-grained semantic features at the function levels. We applied
VULTURE to 10 real-world projects to assess its effectiveness
and efficiency in detecting 1-day vulnerabilities. VULTURE
successfully identified 175 vulnerabilities from 178 reused TPLs.

View More Papers

AI-Assisted RF Fingerprinting for Identification of User Devices in...

Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

Read More

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More

Speak Up, I’m Listening: Extracting Speech from Zero-Permission VR...

Derin Cayir (Florida International University), Reham Mohamed Aburas (American University of Sharjah), Riccardo Lazzeretti (Sapienza University of Rome), Marco Angelini (Link Campus University of Rome), Abbas Acar (Florida International University), Mauro Conti (University of Padua), Z. Berkay Celik (Purdue University), Selcuk Uluagac (Florida International University)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More