Guangke Chen (Pengcheng Laboratory), Yedi Zhang (National University of Singapore), Fu Song (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Science; Nanjing Institute of Software Technology), Ting Wang (Stony Brook University), Xiaoning Du (Monash University), Yang Liu (Nanyang Technological University)

Singing voice conversion (SVC) automates song covers by converting a source singing voice from a source singer into a new singing voice with the same lyrics and melody as the source, but sounds like being covered by the target singer of some given target singing voices. However, it raises serious concerns about copyright and civil right infringements. We propose SongBsAb, the first proactive approach to tackle SVC-based illegal song covers. SongBsAb adds perturbations to singing voices before releasing them, so that when they are used, the process of SVC will be interfered, leading to unexpected singing voices. Perturbations are carefully crafted to (1) provide a dual prevention, i.e., preventing the singing voice from being used as the source and target singing voice in SVC, by proposing a gender-transformation loss and a high/low hierarchy multi-target loss, respectively; and (2) be harmless, i.e., no side-effect on the enjoyment of protected songs, by refining a psychoacoustic model-based loss with the backing track as an additional masker, a unique accompanying element for singing voices compared to ordinary speech voices. We also adopt a frame-level interaction reduction-based loss and encoder ensemble to enhance the transferability of SongBsAb to unknown SVC models. We demonstrate the prevention effectiveness, harmlessness, and robustness of SongBsAb on five diverse and promising SVC models, using both English and Chinese datasets, and both objective and human study-based subjective metrics. Our work fosters an emerging research direction for mitigating illegal automated song covers.

View More Papers

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

TWINFUZZ: Differential Testing of Video Hardware Acceleration Stacks

Matteo Leonelli (CISPA Helmholtz Center for Information Security), Addison Crump (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Florian Bauckholt (CISPA Helmholtz Center for Information Security), Keno Hassler (CISPA Helmholtz Center for Information Security), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information…

Read More

Mysticeti: Reaching the Latency Limits with Uncertified DAGs

Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More