Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Memory safety violations are a significant concern in real-world programs, prompting the development of various mitigation methods. However, existing cost-efficient defenses provide limited protection and can be bypassed by sophisticated attacks, necessitating the combination of multiple defenses. Unfortunately, combining these defenses often results in performance degradation and compatibility issues.

We present CCTAG, a lightweight architecture that simplifies the integration of diverse tag-based defense mechanisms. It offers configurable tag verification and modification rules to build various security policies, acting as basic protection primitives for defense applications. Its policy-centric mask design boosts flexibility and prevents conflicts, enabling multiple defense mechanisms to run concurrently. Our RISC-V prototype on an FPGA board demonstrates that CCTAG incurs minimal hardware overhead, with a slight increase in LUTs (6.77%) and FFs (8.02%). With combined protections including ret address protection, code pointer and vtable pointer integrity, and memory coloring, the SPEC CPU CINT2006 and CINT2017 benchmarks report low runtime overheads of 4.71% and 7.93%, respectively. Security assessments with CVEs covering major memory safety vulnerabilities and various exploitation techniques verify CCTAG’s effectiveness in mitigating real-world threats.

View More Papers

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More

ERW-Radar: An Adaptive Detection System against Evasive Ransomware by...

Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

Density Boosts Everything: A One-stop Strategy for Improving Performance,...

Jianwen Tian (Academy of Military Sciences), Wei Kong (Zhejiang Sci-Tech University), Debin Gao (Singapore Management University), Tong Wang (Academy of Military Sciences), Taotao Gu (Academy of Military Sciences), Kefan Qiu (Beijing Institute of Technology), Zhi Wang (Nankai University), Xiaohui Kuang (Academy of Military Sciences)

Read More

DRAGON: Predicting Decompiled Variable Data Types with Learned Confidence...

Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

Read More