Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

While neural networks (NNs) are traditionally associated with tasks such as image recognition and natural language processing, this paper presents a novel application of NNs for efficient cryptographic computations. Leveraging the Turing completeness and inherent adaptability of NN models, we propose a transformative approach that efficiently accelerates cryptographic computations on various platforms. More specifically, with a program translation framework that converts traditional cryptographic algorithms into NN models, our proof-of-concept implementations in TensorFlow demonstrate substantial performance improvements: encryption speeds for AES, Chacha20, and Salsa20 show increases of up to 4.09$times$, 5.44$times$, and 5.06$times$, respectively, compared to existing GPU-based cryptographic solutions written by human experts. These enhancements are achieved without compromising the security of the original cryptographic algorithms, ensuring that our neural network-based approach maintains robust security standards. This repurposing of NNs opens new pathways for the development of scalable, efficient, and secure cryptographic systems that can adapt to the evolving
demands of modern computing environments.

View More Papers

Off-Path TCP Hijacking in Wi-Fi Networks: A Packet-Size Side...

Ziqiang Wang (Southeast University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Yuxiang Yang (Tsinghua University), Mengyuan Li (University of Toronto), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More

Logical Maneuvers: Detecting and Mitigating Adversarial Hardware Faults in...

Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More

On Borrowed Time – Preventing Static Side-Channel Analysis

Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

Read More