Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

While neural networks (NNs) are traditionally associated with tasks such as image recognition and natural language processing, this paper presents a novel application of NNs for efficient cryptographic computations. Leveraging the Turing completeness and inherent adaptability of NN models, we propose a transformative approach that efficiently accelerates cryptographic computations on various platforms. More specifically, with a program translation framework that converts traditional cryptographic algorithms into NN models, our proof-of-concept implementations in TensorFlow demonstrate substantial performance improvements: encryption speeds for AES, Chacha20, and Salsa20 show increases of up to 4.09$times$, 5.44$times$, and 5.06$times$, respectively, compared to existing GPU-based cryptographic solutions written by human experts. These enhancements are achieved without compromising the security of the original cryptographic algorithms, ensuring that our neural network-based approach maintains robust security standards. This repurposing of NNs opens new pathways for the development of scalable, efficient, and secure cryptographic systems that can adapt to the evolving
demands of modern computing environments.

View More Papers

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More

Security Signals: Making Web Security Posture Measurable at Scale

Michele Spagnuolo (Google), David Dworken (Google), Artur Janc (Google), Santiago Díaz (Google), Lukas Weichselbaum (Google)

Read More

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More