Yichen Gong (Tsinghua University), Delong Ran (Tsinghua University), Xinlei He (Hong Kong University of Science and Technology (Guangzhou)), Tianshuo Cong (Tsinghua University), Anyu Wang (Tsinghua University), Xiaoyun Wang (Tsinghua University)

The safety alignment of Large Language Models (LLMs) is crucial to prevent unsafe content that violates human values.
To ensure this, it is essential to evaluate the robustness of their alignment against diverse malicious attacks.
However, the lack of a large-scale, unified measurement framework hinders a comprehensive understanding of potential vulnerabilities.
To fill this gap, this paper presents the first comprehensive evaluation of existing and newly proposed safety misalignment methods for LLMs. Specifically, we investigate four research questions: (1) evaluating the robustness of LLMs with different alignment strategies, (2) identifying the most effective misalignment method, (3) determining key factors that influence misalignment effectiveness, and (4) exploring various defenses.
The safety misalignment attacks in our paper include system-prompt modification, model fine-tuning, and model editing.
Our findings show that Supervised Fine-Tuning is the most potent attack but requires harmful model responses.
In contrast, our novel Self-Supervised Representation Attack (SSRA) achieves significant misalignment without harmful responses.
We also examine defensive mechanisms such as safety data filter, model detoxification, and our proposed Self-Supervised Representation Defense (SSRD), demonstrating that SSRD can effectively re-align the model.
In conclusion, our unified safety alignment evaluation framework empirically highlights the fragility of the safety alignment of LLMs.

View More Papers

ERW-Radar: An Adaptive Detection System against Evasive Ransomware by...

Lingbo Zhao (Institute of Information Engineering,Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering,Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering,Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering,CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

An Empirical Study on Fingerprint API Misuse with Lifecycle...

Xin Zhang (Fudan University), Xiaohan Zhang (Fudan University), Zhichen Liu (Fudan University), Bo Zhao (Fudan University), Zhemin Yang (Fudan University), Min Yang (Fudan University)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More