Tyler Tucker (University of Florida), Nathaniel Bennett (University of Florida), Martin Kotuliak (ETH Zurich), Simon Erni (ETH Zurich), Srdjan Capkun (ETH Zuerich), Kevin Butler (University of Florida), Patrick Traynor (University of Florida)

IMSI-Catchers allow parties other than cellular network providers to covertly track mobile device users. While the research community has developed many tools to combat this problem, current solutions focus on correlated behavior and are therefore subject to substantial false classifications. In this paper, we present a standards-driven methodology that focuses on the messages an IMSI-Catcher textit{must} use to cause mobile devices to provide their permanent identifiers. That is, our approach focuses on causal attributes rather than correlated ones. We systematically analyze message flows that would lead to IMSI exposure (most of which have not been previously considered in the research community), and identify 53 messages an IMSI-Catcher can use for its attack. We then perform a measurement study on two continents to characterize the ratio in which connections use these messages in normal operations. We use these benchmarks to compare against open-source IMSI-Catcher implementations and then observe anomalous behavior at a large-scale event with significant media attention. Our analysis strongly implies the presence of an IMSI-Catcher at said public event ($p << 0.005$), thus representing the first publication to provide evidence of the statistical significance of its findings.

View More Papers

Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication...

Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Towards Better CFG Layouts

Jack Royer (CentraleSupélec), Frédéric TRONEL (CentraleSupélec, Inria, CNRS, University of Rennes), Yaëlle Vinçont (Univ Rennes, Inria, CNRS, IRISA)

Read More

Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion...

Lingzhi Wang (Northwestern University), Xiangmin Shen (Northwestern University), Weijian Li (Northwestern University), Zhenyuan LI (Zhejiang University), R. Sekar (Stony Brook University), Han Liu (Northwestern University), Yan Chen (Northwestern University)

Read More