Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

In recent years a new class of side-channel attacks has emerged. Instead of targeting device emissions during dynamic computation, adversaries now frequently exploit the leakage or response behaviour of integrated circuits in a static state. Members of this class include Static Power Side-Channel Analysis (SCA), Laser Logic State Imaging (LLSI) and Impedance Analysis (IA). Despite relying on different physical phenomena, they all enable the extraction of sensitive information from circuits in a static state with high accuracy and low noise -- a trait that poses a significant threat to many established side-channel countermeasures.

In this work, we point out the shortcomings of existing solutions and derive a simple yet effective countermeasure. We observe that in order to realise their full potential, static side-channel attacks require the targeted data to remain unchanged for a certain amount of time. For some cryptographic secrets this happens naturally, for others it requires stopping the target circuit's clock. Our proposal, called Borrowed Time, hinders an attacker's ability to leverage such idle conditions, even if full control over the global clock signal is obtained. For that, by design, key-dependent data may only be present in unprotected temporary storage (e.g. flip-flops) when strictly needed. Borrowed Time then continuously monitors the target circuit and upon detecting an idle state, securely wipes sensitive contents.

We demonstrate the need for our countermeasure and its effectiveness by mounting practical static power SCA attacks against cryptographic systems on FPGAs, with and without Borrowed Time. In one case we attack a masked implementation and show that it is only protected with our countermeasure in place. Furthermore we demonstrate that secure on-demand wiping of sensitive data works as intended, affirming the theory that the technique also effectively hinders LLSI and IA.

View More Papers

NDSS Symposium 2025 Welcome and Opening Remarks

General Chairs: David Balenson, USC Information Sciences Institute and Heng Yin, University of California, Riverside Program Chairs: Christina Pöpper, New York University Abu Dhabi and Hamed Okhravi, MIT Lincoln Laboratory Artifact Evaluation Chairs: Daniele Cono D’Elia, Sapienza University and Mathy Vanhoef, KU Leuven

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

ERW-Radar: An Adaptive Detection System against Evasive Ransomware by...

Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More