Ye Liu (Singapore Management University), Yue Xue (MetaTrust Labs), Daoyuan Wu (The Hong Kong University of Science and Technology), Yuqiang Sun (Nanyang Technological University), Yi Li (Nanyang Technological University), Miaolei Shi (MetaTrust Labs), Yang Liu (Nanyang Technological University)

Formal verification is a technique that can prove the correctness of a system with respect to a certain specification or property. It is especially valuable for security-sensitive smart contracts that manage billions in cryptocurrency assets. Although existing research has developed various static verification tools (or provers) for smart contracts, a key missing component is the
automated generation of comprehensive properties, including invariants, pre-/post-conditions, and rules. Hence, industry-leading players like Certora have to rely on their own or crowdsourced experts to manually write properties case by case.

With recent advances in large language models (LLMs), this paper explores the potential of leveraging state-of-the-art LLMs, such as GPT-4, to transfer existing human-written properties (e.g., those from Certora auditing reports) and automatically generate customized properties for unknown code. To this end, we embed existing properties into a vector database and retrieve a reference property for LLM-based in-context learning to generate a new property for a given code. While this basic process is relatively straightforward, ensuring that the generated properties are (i) compilable, (ii) appropriate, and (iii) verifiable presents challenges. To address (i), we use the compilation and static analysis feedback as an external oracle to guide LLMs in iteratively revising the generated properties. For (ii), we consider multiple dimensions of
similarity to rank the properties and employ a weighted algorithm to identify the top-K properties as the final result. For (iii), we design a dedicated prover to formally verify the correctness of the generated properties. We have implemented these strategies into a novel LLM-based property generation tool called PropertyGPT. Our experiments show that PropertyGPT can generate comprehensive and high-quality properties, achieving an 80% recall compared to the ground truth. It successfully detected 26 CVEs/attack incidents out of 37 tested and also uncovered 12 zero-day vulnerabilities, leading to $8,256 in bug bounty rewards.

View More Papers

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs...

Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Mens Sana In Corpore Sano: Sound Firmware Corpora for...

René Helmke (Fraunhofer FKIE), Elmar Padilla (Fraunhofer FKIE, Germany), Nils Aschenbruck (University of Osnabrück)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

QMSan: Efficiently Detecting Uninitialized Memory Errors During Fuzzing

Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Read More