Sofia Celi (Brave Software), Alex Davidson (NOVA LINCS & Universidade NOVA de Lisboa), Hamed Haddadi (Imperial College London & Brave Software), Gonçalo Pestana (Hashmatter), Joe Rowell (Information Security Group, Royal Holloway, University of London)

We design DiStefano: an efficient, maliciously-secure framework for generating private commitments over TLS-encrypted web traffic, for verification by a designated third-party. DiStefano provides many improvements over previous TLS commitment systems, including: a modular protocol specific to TLS 1.3, support for arbitrary verifiable claims over encrypted data, client browsing history privacy amongst pre-approved TLS servers, and various optimisations to ensure fast online performance of the TLS 1.3 session. We build a permissive open-source implementation of DiStefano integrated into the BoringSSL cryptographic library (used by Chromium-based Internet browsers). We show that DiStefano is practical in both LAN and WAN settings for committing to facts in arbitrary TLS traffic, requiring < 1 s and ≤ 80 KiB to execute the complete online phase of the protocol.

View More Papers

Analysis of Misconfigured IoT MQTT Deployments and a Lightweight...

Seyed Ali Ghazi Asgar, Narasimha Reddy (Texas A&M University)

Read More

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More