Sofia Celi (Brave Software), Alex Davidson (NOVA LINCS & Universidade NOVA de Lisboa), Hamed Haddadi (Imperial College London & Brave Software), Gonçalo Pestana (Hashmatter), Joe Rowell (Information Security Group, Royal Holloway, University of London)

We design DiStefano: an efficient, maliciously-secure framework for generating private commitments over TLS-encrypted web traffic, for verification by a designated third-party. DiStefano provides many improvements over previous TLS commitment systems, including: a modular protocol specific to TLS 1.3, support for arbitrary verifiable claims over encrypted data, client browsing history privacy amongst pre-approved TLS servers, and various optimisations to ensure fast online performance of the TLS 1.3 session. We build a permissive open-source implementation of DiStefano integrated into the BoringSSL cryptographic library (used by Chromium-based Internet browsers). We show that DiStefano is practical in both LAN and WAN settings for committing to facts in arbitrary TLS traffic, requiring < 1 s and ≤ 80 KiB to execute the complete online phase of the protocol.

View More Papers

Security Signals: Making Web Security Posture Measurable at Scale

Michele Spagnuolo (Google), David Dworken (Google), Artur Janc (Google), Santiago Díaz (Google), Lukas Weichselbaum (Google)

Read More

BARBIE: Robust Backdoor Detection Based on Latent Separability

Hanlei Zhang (Zhejiang University), Yijie Bai (Zhejiang University), Yanjiao Chen (Zhejiang University), Zhongming Ma (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More