Jie Lin (University of Central Florida), David Mohaisen (University of Central Florida)

Large Language Models (LLMs) have demonstrated strong potential in tasks such as code understanding and generation. This study evaluates several advanced LLMs—such as LLaMA-2, CodeLLaMA, LLaMA-3, Mistral, Mixtral, Gemma, CodeGemma, Phi-2, Phi-3, and GPT-4—for vulnerability detection, primarily in Java, with additional tests in C/C++ to assess generalization. We transition from basic positive sample detection to a more challenging task involving both positive and negative samples and evaluate the LLMs’ ability to identify specific vulnerability types. Performance is analyzed using runtime and detection accuracy in zero-shot and few-shot settings with custom and generic metrics. Key insights include the strong performance of models like Gemma and LLaMA-2 in identifying vulnerabilities, though this success varies, with some configurations performing no better than random guessing. Performance also fluctuates significantly across programming languages and learning modes (zero- vs. few-shot). We further investigate the impact of model parameters, quantization methods, context window (CW) sizes, and architectural choices on vulnerability detection. While CW consistently enhances performance, benefits from other parameters, such as quantization, are more limited. Overall, our findings underscore the potential of LLMs in automated vulnerability detection, the complex interplay of model parameters, and the current limitations in varied scenarios and configurations.

View More Papers

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Read More

Hitchhiking Vaccine: Enhancing Botnet Remediation With Remote Code Deployment...

Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More