Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

An increasing number of distributed platforms combine Trusted Execution Environments (TEEs) with blockchains. Indeed, many hail the combination of TEEs and blockchains a good “marriage”: TEEs bring confidential computing to the blockchain while the consensus layer could help defend TEEs from forking attacks.

In this paper, we systemize how current blockchain solutions integrate TEEs and to what extent they are secure against forking attacks. To do so, we thoroughly analyze 29 proposals for TEE-based blockchains, ranging from academic proposals to production-ready platforms. We uncover a lack of consensus in the community on how to combine TEEs and blockchains. In particular, we identify four broad means to interconnect TEEs with consensus, analyze their limitations, and discuss possible remedies. Our analysis also reveals previously undocumented forking attacks on three production-ready TEE-based blockchains: Ten, Phala, and the Secret Network. We leverage our analysis to propose effective countermeasures against those vulnerabilities; we responsibly disclosed our findings to the developers of each affected platform.

View More Papers

AI-Assisted RF Fingerprinting for Identification of User Devices in...

Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

Read More

Poster: FORESIGHT, A Unified Framework for Threat Modeling and...

ChaeYoung Kim (Seoul Women's University), Kyounggon Kim (Naif Arab University for Security Sciences)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More