Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Bandwidth limitation is the major bottleneck that hinders scaling throughput of proof-of-work blockchains. To guarantee security, the mining rate of the blockchain is determined by the miners with the lowest bandwidth, resulting in an inefficient bandwidth utilization among fast miners. We propose Manifoldchain, an innovative blockchain sharding protocol that alleviates the impact of slow miners to maximize blockchain throughput. Manifoldchain utilizes a bandwidth-clustered shard formation mechanism that groups miners with similar bandwidths into the same shard. Consequently, this approach enables us to set an optimal mining rate for each shard based on its bandwidth, effectively reducing the waiting time caused by slow miners. Nevertheless, the adversary could corrupt miners with similar bandwidths, thereby concentrating hashing power and potentially creating an adversarial majority within a single shard. To counter this adversarial strategy, we introduce textit{sharing mining}, allowing the honest mining power of the entire network to participate in the secure ledger formation of each shard, thereby achieving the same level of security as an unsharded blockchain. Additionally, we introduce an asynchronous atomic commitment mechanism to ensure transaction atomicity across shards with various mining rates. Our theoretical analysis demonstrates that Manifoldchain scales linearly in throughput with the increase in shard numbers and inversely with network delay in each shard. We implement a full system prototype of Manifoldchain, comprehensively evaluated on both simulated and real-world testbeds. These experiments validate its vertical scalability with network bandwidth and horizontal scalability with network size, achieving a substantial improvement of 186% in throughput over baseline sharding protocols, for scenarios where bandwidths of miners range from 5Mbps to 60Mbps.

View More Papers

Query Privacy in Data Spaces

Shuwen Liu (School of Data Science, The Chinese University of Hong Kong, Shenzhen, China), George C. Polyzos (School of Data Science, The Chinese University of Hong Kong, Shenzhen, China and ExcID P.C., Athens, Greece)

Read More

Generating API Parameter Security Rules with LLM for API...

Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More

The Road to Trust: Building Enclaves within Confidential VMs

Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering,…

Read More

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More