Maryam Rostamipoor (Stony Brook University), Seyedhamed Ghavamnia (University of Connecticut), Michalis Polychronakis (Stony Brook University)

As the use of language-level sandboxing for running untrusted code grows, the risks associated with memory disclosure vulnerabilities and transient execution attacks become increasingly significant. Besides the execution of untrusted JavaScript or WebAssembly code in web browsers, serverless environments have also started relying on language-level isolation to improve scalability by running multiple functions from different customers within a single process. Web browsers have adopted process-level sandboxing to mitigate memory leakage attacks, but this solution is not applicable in serverless environments, as running each function as a separate process would negate the performance benefits of language-level isolation.

In this paper we present LeakLess, a selective data protection approach for serverless computing platforms. LeakLess alleviates the limitations of previous selective data protection techniques by combining in-memory encryption with a separate I/O module to enable the safe transmission of the protected data between serverless functions and external hosts. We implemented LeakLess on top of the Spin serverless platform, and evaluated it with real-world serverless applications. Our results demonstrate that LeakLess offers robust protection while incurring a minor throughput decrease under stress-testing conditions of up to 2.8% when the I/O module runs on a different host than the Spin runtime, and up to 8.5% when it runs on the same host.

View More Papers

Impact Tracing: Identifying the Culprit of Misinformation in Encrypted...

Zhongming Wang (Chongqing University), Tao Xiang (Chongqing University), Xiaoguo Li (Chongqing University), Biwen Chen (Chongqing University), Guomin Yang (Singapore Management University), Chuan Ma (Chongqing University), Robert H. Deng (Singapore Management University)

Read More

No Source Code? No Problem! Twenty Years of Research...

Jack W. Davidson, Professor of Computer Science in the School of Engineering and Applied Science, University of Virginia

Read More

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More

Defending Against Membership Inference Attacks on Iteratively Pruned Deep...

Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Read More