Vasudev Gohil (Texas A&M University), Matthew DeLorenzo (Texas A&M University), Veera Vishwa Achuta Sai Venkat Nallam (Texas A&M University), Joey See (Texas A&M University), Jeyavijayan Rajendran (Texas A&M University)

The rapid advancement of large language models (LLMs) has enabled the ability to effectively analyze and generate code nearly instantaneously, resulting in their widespread adoption in software development. Following this advancement, researchers and companies have also begun integrating LLMs across the hardware design and verification process. However, these highly potent LLMs can also induce new attack scenarios upon security vulnerabilities across the hardware development process. One such attack vector that has not been explored so far is intellectual property (IP) piracy. Given that this attack can manifest as rewriting hardware designs to evade piracy detection, it is essential to thoroughly evaluate LLM capabilities in performing this task and assess the mitigation abilities of current IP piracy detection tools.

Therefore, in this work, we propose *LLMPirate*, the first LLM-based technique able to generate pirated variations of circuit designs that successfully evade detection across multiple state-of-the-art piracy detection tools. We devise three solutions to overcome challenges related to integration of LLMs for hardware circuit designs, scalability to large circuits, and effectiveness, resulting in an end-to-end automated, efficient, and practical formulation. We perform an extensive experimental evaluation of *LLMPirate* using eight LLMs of varying sizes and capabilities and assess their performance in pirating various circuit designs against four state-of-the-art, widely-used piracy detection tools. Our experiments demonstrate that *LLMPirate* is able to consistently evade detection on 100% of tested circuits across every detection tool. Additionally, we showcase the ramifications of *LLMPirate* using case studies on IBEX and MOR1KX processors and a GPS module, that we successfully pirate. We envision that our work motivates and fosters the development of better IP piracy detection tools.

View More Papers

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

BinEnhance: An Enhancement Framework Based on External Environment Semantics...

Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese…

Read More

Transparency or Information Overload? Evaluating Users’ Comprehension and Perceptions...

Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More