Haotian Zhu (Nanjing University of Science and Technology), Shuchao Pang (Nanjing University of Science and Technology), Zhigang Lu (Western Sydney University), Yongbin Zhou (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61)

Text-to-image diffusion model's fine-tuning technology allows people to easily generate a large number of customized photos using limited identity images. Although this technology is easy to use, its misuse could lead to violations of personal portraits and privacy, with false information and harmful content potentially causing further harm to individuals. Several methods have been proposed to protect faces from customization via adding protective noise to user images by disrupting the fine-tuned models.

Unfortunately, simple pre-processing techniques like JPEG compression, a normal pre-processing operation performed by modern social networks, can easily erase the protective effects of existing methods. To counter JPEG compression and other potential pre-processing, we propose GAP-Diff, a framework of underline{G}enerating data with underline{A}dversarial underline{P}erturbations for text-to-image underline{Diff}usion models using unsupervised learning-based optimization, including three functional modules. Specifically, our framework learns robust representations against JPEG compression by backpropagating gradient information through a pre-processing simulation module while learning adversarial characteristics for disrupting fine-tuned text-to-image diffusion models. Furthermore, we achieve an adversarial mapping from clean images to protected images by designing adversarial losses against these fine-tuning methods and JPEG compression, with stronger protective noises within milliseconds. Facial benchmark experiments, compared to state-of-the-art protective methods, demonstrate that GAP-Diff significantly enhances the resistance of protective noise to JPEG compression, thereby better safeguarding user privacy and copyrights in the digital world.

View More Papers

Welcome to Jurassic Park: A Comprehensive Study of Security...

Abdullah AlHamdan (CISPA Helmholtz Center for Information Security), Cristian-Alexandru Staicu (CISPA Helmholtz Center for Information Security)

Read More

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More

TWINFUZZ: Differential Testing of Video Hardware Acceleration Stacks

Matteo Leonelli (CISPA Helmholtz Center for Information Security), Addison Crump (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Florian Bauckholt (CISPA Helmholtz Center for Information Security), Keno Hassler (CISPA Helmholtz Center for Information Security), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information…

Read More

“I’m 73, you can’t expect me to have multiple...

Ashley Sheil (Munster Technological University), Jacob Camilleri (Munster Technological University), Michelle O Keeffe (Munster Technological University), Melanie Gruben (Munster Technological University), Moya Cronin (Munster Technological University) and Hazel Murray (Munster Technological University)

Read More