Haotian Zhu (Nanjing University of Science and Technology), Shuchao Pang (Nanjing University of Science and Technology), Zhigang Lu (Western Sydney University), Yongbin Zhou (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61)

Text-to-image diffusion model's fine-tuning technology allows people to easily generate a large number of customized photos using limited identity images. Although this technology is easy to use, its misuse could lead to violations of personal portraits and privacy, with false information and harmful content potentially causing further harm to individuals. Several methods have been proposed to protect faces from customization via adding protective noise to user images by disrupting the fine-tuned models.

Unfortunately, simple pre-processing techniques like JPEG compression, a normal pre-processing operation performed by modern social networks, can easily erase the protective effects of existing methods. To counter JPEG compression and other potential pre-processing, we propose GAP-Diff, a framework of underline{G}enerating data with underline{A}dversarial underline{P}erturbations for text-to-image underline{Diff}usion models using unsupervised learning-based optimization, including three functional modules. Specifically, our framework learns robust representations against JPEG compression by backpropagating gradient information through a pre-processing simulation module while learning adversarial characteristics for disrupting fine-tuned text-to-image diffusion models. Furthermore, we achieve an adversarial mapping from clean images to protected images by designing adversarial losses against these fine-tuning methods and JPEG compression, with stronger protective noises within milliseconds. Facial benchmark experiments, compared to state-of-the-art protective methods, demonstrate that GAP-Diff significantly enhances the resistance of protective noise to JPEG compression, thereby better safeguarding user privacy and copyrights in the digital world.

View More Papers

The (Un)usual Suspects – Studying Reasons for Lacking Updates...

Maria Hellenthal (CISPA Helmholtz Center for Information Security), Lena Gotsche (CISPA Helmholtz Center for Information Security), Rafael Mrowczynski (CISPA Helmholtz Center for Information Security), Sarah Kugel (Saarland University), Michael Schilling (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

Truman: Constructing Device Behavior Models from OS Drivers to...

Zheyu Ma (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; EPFL; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Qiang Liu (EPFL), Zheming Li (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Tingting Yin (Zhongguancun…

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

PQConnect: Automated Post-Quantum End-to-End Tunnels

Daniel J. Bernstein (University of Illinois at Chicago and Academia Sinica), Tanja Lange (Eindhoven University of Technology amd Academia Sinica), Jonathan Levin (Academia Sinica and Eindhoven University of Technology), Bo-Yin Yang (Academia Sinica)

Read More