Tianpei Lu (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Bingsheng Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Xiaoyuan Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Model quantization has become a common practice in machine learning (ML) to improve efficiency and reduce computational/communicational overhead. However, adopting quantization in privacy-preserving machine learning (PPML) remains challenging due to the complex internal structure of quantized operators, which leads to inefficient protocols under the existing PPML frameworks.

In this work, we propose a new PPML paradigm that is tailor-made for and can benefit from quantized models. Our main observation is that look-up tables can ignore the complex internal constructs of any functions which can be used to simplify the quantized operator evaluation. We view the model inference process as a sequence of quantized operators, and each operator is implemented by a look-up table. We then develop an efficient private look-up table evaluation protocol, and its online communication cost is only $log n$, where $n$ is the size of the look-up table.
On a single CPU core, our protocol can evaluate $2^{26}$ tables with 8-bit input and 8-bit output per second.

The resulting PPML framework for quantized models offers extremely fast online performance.
The experimental results demonstrate that our quantization strategy achieves substantial speedups over SOTA PPML solutions, improving the online performance by $40sim 60 times$ w.r.t. convolutional neural network (CNN) models, such as AlexNet, VGG16, and ResNet18, and by $10sim 25 times$ w.r.t. large language models (LLMs), such as GPT-2, GPT-Neo, and Llama2.

View More Papers

Reinforcement Unlearning

Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO's Data61)

Read More

LeakLess: Selective Data Protection against Memory Leakage Attacks for...

Maryam Rostamipoor (Stony Brook University), Seyedhamed Ghavamnia (University of Connecticut), Michalis Polychronakis (Stony Brook University)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

Hidden and Lost Control: on Security Design Risks in...

Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph…

Read More