Tian Dong (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Guoxing Chen (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Yan Meng (Shanghai Jiao Tong University), Shaofeng Li (Southeast University), Zhen Liu (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Open-source Large Language Models (LLMs) have recently gained popularity because of their comparable performance to proprietary LLMs. To efficiently fulfill domain-specialized tasks, open-source LLMs can be refined, without expensive accelerators, using low-rank adapters. However, it is still unknown whether low-rank adapters can be exploited to control LLMs. To address this gap, we demonstrate that an infected adapter can induce, on specific triggers, an LLM to output content defined by an adversary and to even maliciously use tools. To train a Trojan adapter, we propose two novel attacks, POLISHED and FUSION, that improve over prior approaches. POLISHED uses a superior LLM to align naïvely poisoned data based on our insight that it can better inject poisoning knowledge during training. In contrast, FUSION leverages a novel over-poisoning procedure to transform a benign adapter into a malicious one by magnifying the attention between trigger and target in model weights. In our experiments, we first conduct two case studies to demonstrate that a compromised LLM agent can use malware to control the system (e.g., a LLM-driven robot) or to launch a spear-phishing attack. Then, in terms of targeted misinformation, we show that our attacks provide higher attack effectiveness than the existing baseline and, for the purpose of attracting downloads, preserve or improve the adapter’s utility. Finally, we designed and evaluated three potential defenses. However, none proved entirely effective in safeguarding against our attacks, highlighting the need for more robust defenses supporting a secure LLM supply chain.

View More Papers

Cellular Metasploit

Dr. Yongdae Kim, Director, KAIST Chair Professor, Electrical Engineering and GSIS, KAIST

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

Reinforcement Unlearning

Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO's Data61)

Read More

URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning

Duanyi Yao (Hong Kong University of Science and Technology), Songze Li (Southeast University), Xueluan Gong (Wuhan University), Sizai Hou (Hong Kong University of Science and Technology), Gaoning Pan (Hangzhou Dianzi University)

Read More