Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Graphics Processing Units (GPUs) have become an indispensable part of modern computing infrastructure. They can execute massively parallel tasks on large data sets and have rich user space-accessible APIs for 3D rendering and general-purpose parallel programming. Unfortunately, the GPU drivers that bridge the gap between these APIs and the underlying hardware have grown increasingly large and complex over the years. Many GPU drivers now expose broad attack surfaces and pose serious security risks.

Fuzzing is a proven automated testing method that mitigates these risks by identifying potential vulnerabilities. However, when applied to GPU drivers, existing fuzzers incur high costs and scale poorly because they rely on physical GPUs. Furthermore, they achieve limited effectiveness because they often fail to meet dependency and timing constraints while generating and executing input events.

We present Moneta, a new ex-vivo approach to driver fuzzing that can statefully and effectively fuzz GPU drivers at scale. The key idea is (i) to recall past, in-vivo GPU driver execution states by synergistically combining snapshot-and-rehost and record-and-replay along with our proposed suite of GPU stack virtualization and introspection techniques, and (ii) to start parallel and stateful ex-vivo GPU driver fuzzing from the recalled states. We implemented a prototype of Moneta and evaluated it on three mainstream GPU drivers. Our prototype triggered deep, live GPU driver states during fuzzing, and found five previously unknown bugs in the NVIDIA GPU driver, three in the AMD Radeon GPU driver, and two in the ARM Mali GPU driver. These ten bugs were all confirmed by the respective vendors in response to our responsible disclosure, and five new CVEs were assigned.

View More Papers

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More

Automatic Library Fuzzing through API Relation Evolvement

Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Read More