Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Graphics Processing Units (GPUs) have become an indispensable part of modern computing infrastructure. They can execute massively parallel tasks on large data sets and have rich user space-accessible APIs for 3D rendering and general-purpose parallel programming. Unfortunately, the GPU drivers that bridge the gap between these APIs and the underlying hardware have grown increasingly large and complex over the years. Many GPU drivers now expose broad attack surfaces and pose serious security risks.

Fuzzing is a proven automated testing method that mitigates these risks by identifying potential vulnerabilities. However, when applied to GPU drivers, existing fuzzers incur high costs and scale poorly because they rely on physical GPUs. Furthermore, they achieve limited effectiveness because they often fail to meet dependency and timing constraints while generating and executing input events.

We present Moneta, a new ex-vivo approach to driver fuzzing that can statefully and effectively fuzz GPU drivers at scale. The key idea is (i) to recall past, in-vivo GPU driver execution states by synergistically combining snapshot-and-rehost and record-and-replay along with our proposed suite of GPU stack virtualization and introspection techniques, and (ii) to start parallel and stateful ex-vivo GPU driver fuzzing from the recalled states. We implemented a prototype of Moneta and evaluated it on three mainstream GPU drivers. Our prototype triggered deep, live GPU driver states during fuzzing, and found five previously unknown bugs in the NVIDIA GPU driver, three in the AMD Radeon GPU driver, and two in the ARM Mali GPU driver. These ten bugs were all confirmed by the respective vendors in response to our responsible disclosure, and five new CVEs were assigned.

View More Papers

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Vision: Retiring Scenarios — Enabling Ecologically Valid Measurement in...

Oliver D. Reithmaier (Leibniz University Hannover), Thorsten Thiel (Atmina Solutions), Anne Vonderheide (Leibniz University Hannover), Markus Dürmuth (Leibniz University Hannover)

Read More

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More

Compiled Models, Built-In Exploits: Uncovering Pervasive Bit-Flip Attack Surfaces...

Yanzuo Chen (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More