Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Graphics Processing Units (GPUs) have become an indispensable part of modern computing infrastructure. They can execute massively parallel tasks on large data sets and have rich user space-accessible APIs for 3D rendering and general-purpose parallel programming. Unfortunately, the GPU drivers that bridge the gap between these APIs and the underlying hardware have grown increasingly large and complex over the years. Many GPU drivers now expose broad attack surfaces and pose serious security risks.

Fuzzing is a proven automated testing method that mitigates these risks by identifying potential vulnerabilities. However, when applied to GPU drivers, existing fuzzers incur high costs and scale poorly because they rely on physical GPUs. Furthermore, they achieve limited effectiveness because they often fail to meet dependency and timing constraints while generating and executing input events.

We present Moneta, a new ex-vivo approach to driver fuzzing that can statefully and effectively fuzz GPU drivers at scale. The key idea is (i) to recall past, in-vivo GPU driver execution states by synergistically combining snapshot-and-rehost and record-and-replay along with our proposed suite of GPU stack virtualization and introspection techniques, and (ii) to start parallel and stateful ex-vivo GPU driver fuzzing from the recalled states. We implemented a prototype of Moneta and evaluated it on three mainstream GPU drivers. Our prototype triggered deep, live GPU driver states during fuzzing, and found five previously unknown bugs in the NVIDIA GPU driver, three in the AMD Radeon GPU driver, and two in the ARM Mali GPU driver. These ten bugs were all confirmed by the respective vendors in response to our responsible disclosure, and five new CVEs were assigned.

View More Papers

Sheep's Clothing, Wolf's Data: Detecting Server-Induced Client Vulnerabilities in...

Fangming Gu (Institute of Information Engineering, Chinese Academy of Sciences), Qingli Guo (Institute of Information Engineering, Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology, Chinese Academy of Sciences), Qinghe Xie (Institute of Information Engineering, Chinese Academy of Sciences), Beibei Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Kangjie Lu (University of Minnesota),…

Read More

AegisSat: A Satellite Cybersecurity Testbed

Roee Idan, Roy Peled, Aviel Ben Siman Tov, Eli Markus, Boris Zadov, Ofir Chodeda, Yohai Fadida (Ben Gurion University of the Negev), Oliver Holschke, Jan Plachy (T-Labs (Research & Innovation)), Yuval Elovici, Asaf Shabtai (Ben Gurion University of the Negev)

Read More

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More

LightAntenna: Characterizing the Limits of Fluorescent Lamp-Induced Electromagnetic Interference

Fengchen Yang (Zhejiang University), Wenze Cui (Zhejiang University), Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More