Shuo Shao (Zhejiang University), Yiming Li (Zhejiang University), Hongwei Yao (Zhejiang University), Yiling He (Zhejiang University), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University)

Ownership verification is currently the most critical and widely adopted post-hoc method to safeguard model copyright. In general, model owners exploit it to identify whether a given suspicious third-party model is stolen from them by examining whether it has particular properties `inherited' from their released models. Currently, backdoor-based model watermarks are the primary and cutting-edge methods to implant such properties in the released models. However, backdoor-based methods have two fatal drawbacks, including emph{harmfulness} and emph{ambiguity}. The former indicates that they introduce maliciously controllable misclassification behaviors ($i.e.$, backdoor) to the watermarked released models. The latter denotes that malicious users can easily pass the verification by finding other misclassified samples, leading to ownership ambiguity.

In this paper, we argue that both limitations stem from the 'zero-bit' nature of existing watermarking schemes, where they exploit the status ($i.e.$, misclassified) of predictions for verification. Motivated by this understanding, we design a new watermarking paradigm, $i.e.$, Explanation as a Watermark (EaaW), that implants verification behaviors into the explanation of feature attribution instead of model predictions. Specifically, EaaW embeds a `multi-bit' watermark into the feature attribution explanation of specific trigger samples without changing the original prediction. We correspondingly design the watermark embedding and extraction algorithms inspired by explainable artificial intelligence. In particular, our approach can be used for different tasks ($e.g.$, image classification and text generation). Extensive experiments verify the effectiveness and harmlessness of our EaaW and its resistance to potential attacks.

View More Papers

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

Delay-allowed Differentially Private Data Stream Release

Xiaochen Li (University of Virginia), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University), Chen Gong (University of Virginia), Shuya Feng (University of Connecticut), Yuan Hong (University of Connecticut), Tianhao Wang (University of Virginia)

Read More

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More