Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

To evade existing antivirus software and detection systems, ransomware authors tend to obscure behavior differences with benign programs by imitating them or by weakening malicious behaviors during encryption. Existing defense solutions have limited effects on defending against evasive ransomware. Fortunately, through extensive observation, we find I/O behaviors of evasive ransomware exhibit a unique repetitiveness during encryption. This is rarely observed in benign programs. Besides, the $chi^2$ test and the probability distribution of byte streams can effectively distinguish encrypted files from benignly modified files. Inspired by these, we first propose ERW-Radar, a detection system, to detect evasive ransomware accurately and efficiently. We make three breakthroughs: 1) a contextual emph{Correlation} mechanism to detect malicious behaviors; 2) a fine-grained content emph{Analysis} mechanism to identify encrypted files; and 3) adaptive mechanisms to achieve a better trade-off between accuracy and efficiency. Experiments show that ERW-Radar detects evasive ransomware with an accuracy of 96.18% while maintaining a FPR of 5.36%. The average overhead of ERW-Radar is 5.09% in CPU utilization and 3.80% in memory utilization.

View More Papers

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More

Retrofitting XoM for Stripped Binaries without Embedded Data Relocation

Chenke Luo (Wuhan University), Jiang Ming (Tulane University), Mengfei Xie (Wuhan University), Guojun Peng (Wuhan University), Jianming Fu (Wuhan University)

Read More