Hongwei Wu (Purdue University), Jianliang Wu (Simon Fraser University), Ruoyu Wu (Purdue University), Ayushi Sharma (Purdue University), Aravind Machiry (Purdue University), Antonio Bianchi (Purdue University)

Vendors are often provided with updated versions of a piece of software, fixing known security issues.
However, the inability to have any guarantee that the provided patched software does not break the functionality of its original version often hinders patch deployment.
This issue is particularly severe when the patched software is only provided in its compiled binary form.
In this case, manual analysis of the patch's source code is impossible, and existing automated patch analysis techniques, which rely on source code, are not applicable.
Even when the source code is accessible, the necessity of binary-level patch verification is still crucial, as highlighted by the recent XZ Utils backdoor.

To tackle this issue, we propose VeriBin, a system able to compare a binary with its patched version and determine whether the patch is ''Safe to Apply'', meaning it does not introduce any modification that could potentially break the functionality of the original binary.
To achieve this goal, VeriBin checks functional equivalence between the original and patched binaries.
In particular, VeriBin first uses symbolic execution to systematically identify patch-introduced modifications.
Then, it checks if the detected patch-introduced modifications respect specific properties that guarantee they will not break the original binary's functionality.
To work without source code, VeriBin's design solves several challenges related to the absence of semantic information (removed during the compilation process) about the analyzed code and the complexity of symbolically executing large functions precisely.
Our evaluation of VeriBin on a dataset of 86 samples shows that it achieves an accuracy of 93.0% with no false positives, requiring only minimal analyst input.
Additionally, we showcase how VeriBin can be used to detect the recently discovered XZ Utils backdoor.

View More Papers

A Multifaceted Study on the Use of TLS and...

Ka Fun Tang (The Chinese University of Hong Kong), Che Wei Tu (The Chinese University of Hong Kong), Sui Ling Angela Mak (The Chinese University of Hong Kong), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding (Northeastern University), Tong Zhou (Northeastern University), Lili Su (Northeastern University), Aidong Adam Ding (Northeastern University), Xiaolin Xu (Northeastern University), Yunsi Fei (Northeastern University)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More